4.7 Article

Exergy analysis on the process with integrated supercritical water gasification of coal and syngas separation

Journal

APPLIED THERMAL ENGINEERING
Volume 128, Issue -, Pages 1003-1008

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.applthermaleng.2017.09.083

Keywords

Supercritical water gasification; Exergy analysis; Energy level

Funding

  1. National Key Research and Development Program of China [2016YFB0600105]

Ask authors/readers for more resources

Supercritical water gasification (SCWG) is a promising technology for clean and efficient coal utilization. The exergy analyses on the processes with integrated SCWG of coal and syngas separation are conducted for clear understanding about the exergy distributions in the processes. The energy level of the heat provided for the gasifier is upgraded to the energy level of the syngas, which is driven by the decrease of energy levels from the coal to the syngas. The minimum temperatures of the heat provided for the gasifier are obtained in different coal-water-slurry concentrations (CWSCs). The total exergy destruction firstly increases, and then decreases with increasing CWSC. The maximum total exergy destruction of the process is obtained when the CWSC is approximately 10%. The exergy efficiency of the process has a converse trend with the total exergy destruction. When the CWSC is in the range of 6% and 20%, the maximum exergy efficiency is 89.18%. The origins for the production of the exergy destruction are also studied. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Thermodynamics

A power generation system with integrated supercritical water gasification of coal and CO2 capture

Zhewen Chen, Xiaosong Zhang, Wei Han, Lin Gao, Sheng Li

ENERGY (2018)

Article Energy & Fuels

Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies

Sheng Li, Xiaosong Zhang, Lin Gao, Hongguang Jin

APPLIED ENERGY (2012)

Article Energy & Fuels

Thermodynamic analysis of chemical-looping hydrogen generation

Xiaosong Zhang, Hongguang Jin

APPLIED ENERGY (2013)

Article Energy & Fuels

A Polygeneration System Based on Multi-Input Chemical Looping Combustion

Xiaosong Zhang, Sheng Li, Hongguang Jin

ENERGIES (2014)

Article Thermodynamics

A chemical intercooling gas turbine cycle with chemical-looping combustion

Xiaosong Zhang, Wei Han, Hui Hong, Hongguang Jin

ENERGY (2009)

Article Thermodynamics

A hydrogen and oxygen combined cycle with chemical-looping combustion

Xiaosong Zhang, Sheng Li, Hui Hong, Hongguang Jin

ENERGY CONVERSION AND MANAGEMENT (2014)

Article Energy & Fuels

Integrating mid-temperature solar heat and post-combustion CO2-capture in a coal-fired power plant

Yawen Zhao, Hui Hong, Xiaosong Zhang, Hongguang Jin

SOLAR ENERGY (2012)

Article Thermodynamics

The energy-saving mechanism of coal-fired power plant with S-CO2 cycle compared to steam-Rankine cycle

Zhewen Chen, Yanjuan Wang, Xiaosong Zhang, Jinliang Xu

ENERGY (2020)

Article Thermodynamics

Exergy Analysis of a Novel Chemical Looping Hydrogen Generation System Integrated with SOFC

Zhang Xiaosong, Chen Zhewen, Chen Zhenbin, Li Jinsong

Summary: This study proposed a novel energy system integrating chemical-looping hydrogen generation and solid oxide fuel cell, achieving efficient utilization of methane and higher net efficiency. The cascade utilization of waste heat and high-efficiency hydrogen production are the main reasons for the system's high performance, allowing CO2 recovery without energy penalty.

JOURNAL OF THERMAL SCIENCE (2021)

Article Thermodynamics

Integration and optimization for a PEMFC and PSA oxygen production combined system

Meilong Deng, Qinwei Zhang, Yakun Huang, Xiaosong Zhang

Summary: The study found that in the new high-temperature proton exchange membrane fuel cell and pressure swing adsorption oxygen generation integrated system, the maximum net power can be achieved when the oxygen concentration is 85%. The system operates under air conditions for maximum efficiency.

ENERGY CONVERSION AND MANAGEMENT (2021)

Article Thermodynamics

Performance optimization of an HT-PEMFC and PSA integrated system with impure hydrogen containing CO2

Jinyi Liu, Yongkang Jiang, Xiaosong Zhang, Lirong Fu, Meilong Deng

Summary: An innovative system that integrates a high-temperature proton exchange membrane fuel cell and a pressure swing adsorption device was proposed in this study to improve the performance of a system using impure hydrogen with carbon dioxide. Simulation results confirmed the feasibility of the new system.

APPLIED THERMAL ENGINEERING (2022)

Article Thermodynamics

Thermal analysis of supercritical water gasification of coal for power generation with partial heat recovery

Zhewen Chen, Xiaosong Zhang, Lin Gao, Sheng Li

APPLIED THERMAL ENGINEERING (2017)

Article Thermodynamics

Cascade utilization of chemical energy of natural gas in an improved CRGT cycle

Wei Han, Hongguang Jin, Na Zhang, Xiaosong Zhang

ENERGY (2007)

Article Thermodynamics

The interaction between cross-flow induced vibration and convection heat transfer in tube bundle at subcritical Reynolds number

Hai Zhao, Puzhen Gao, Xiaochang Li, Ruifeng Tian, Hongyang Wei, Sichao Tan

Summary: This study numerically investigates the interaction between flow-induced vibration and forced convection heat transfer in a tube bundle. The results show that the impact of flow-induced vibration on heat transfer varies in different flow velocity regions.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Sensitivity analysis of an automated fault detection algorithm for residential air-conditioning systems

Rohit Chintala, Jon Winkler, Sugirdhalakshmi Ramaraj, Xin Jin

Summary: The current state of fault detection and diagnosis for residential air-conditioning systems is expensive and not suitable for widespread implementation. This paper proposes a cost-effective solution by introducing an automated fault detection algorithm as a screening step before more expensive tests can be conducted. The algorithm uses home thermostats and local weather information to identify thermodynamic parameters and detect high-impact air-conditioning faults.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

A novel two-step optimization approach for film water cooling of a photovoltaic module in real ambient conditions

A. Azimi, N. Basiri, M. Eslami

Summary: This paper presents a novel optimization algorithm for improving the water-film cooling system of photovoltaic panels, resulting in a significant increase in net energy generation.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Investigating dynamic characteristics and thermal-lag phenomenon in a thermal-lag engine using a CFD-mechanism dynamics model

Duc-Thuan Phung, Chin-Hsiang Cheng

Summary: In this study, a novel CFDMD model is used to analyze and investigate the behavior of thermal-lag engines (TLE). The study shows that the CFDMD model effectively captures the thermodynamic behavior of the working gas and the dynamic behavior of the engine mechanism. Additionally, the study explores the temporal evolution of engine speed and the influence of various parameters on shaft power and brake thermal efficiency. The research also reveals the existence of a thermal-lag phenomenon in TLE.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Surface modification to induce efficient heat transfer at graphene/ silicon heterointerface

Haiying Yang, Yinjie Shen, Lin Li, Yichen Pan, Ping Yang

Summary: The purpose of this article is to find a measure to improve the interfacial thermal transfer of graphene/silicon heterojunction. Through molecular dynamics simulation, it is found that surface modification can significantly reduce the thermal resistance, thereby improving the thermal conductivity of the graphene/silicon interface.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Measurement of reaction temperature distribution inside of methanol steam reforming microreactor using infrared thermography

Qiong Wu, Yancheng Wang, Haonan Zhou, Xingye Qiu, Deqing Mei

Summary: This article introduces a visible methanol steam reforming microreactor, which uses an optical crystal as an observation window and measures the reaction temperature in real-time using infrared thermography. The results show that under lower oxygen to carbon ratio conditions, the microreactor has a higher heating rate and a stable gradient in temperature distribution.

APPLIED THERMAL ENGINEERING (2024)

Review Thermodynamics

A review on multi energy systems modelling and optimization

Giulia Manco, Umberto Tesio, Elisa Guelpa, Vittorio Verda

Summary: In the past decade, there has been a growing interest in studying energy systems for the combined management of power vectors. Most of the published works focus on finding the optimal design and operations of Multi Energy Systems (MES). However, for newcomers to this field, understanding how to achieve the desired optimization details while controlling computational expenses can be challenging and time-consuming. This paper presents a novel approach to analyzing the existing literature on MES, with the aim of guiding practical development of MES optimization. Through the discussion of six case studies, the authors provide a mathematical formulation as a reference for building the model and emphasize the impact of different aspects on the problem nature and solver selection. In addition, the paper also discusses the different approaches used in the literature for incorporating thermal networks and storage in the optimization of multi-energy systems.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Fabrication and capillary performance of multi-scale microgroove ceramic wicks via nanosecond laser irradiation for ultrathin ceramic heat pipes

Xuepeng Yuan, Caiman Yan, Yunxian Huang, Yong Tang, Shiwei Zhang, Gong Chen

Summary: In this study, a multi-scale microgroove wick (MSMGW) was developed by laser irradiation, which demonstrated superior capillary performance. The surface morphology and performance of the wick were affected by laser scan pitch, laser power, repetition frequency, and scanning speed. The MSMGW showed optimal capillary performance in alumina material and DI water as the working fluid.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Ergodic simulation of droplet growth during dropwise condensation

Maofei Mei, Feng Hu, Chong Han

Summary: This paper proposes an effective local search method based on detection of droplet boundaries for understanding the dynamic process of droplet growth during dropwise condensation. The method is validated by comparing with experimental data. The present simulation provides an effective approach to more accurately predict the nucleation site density in future studies.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

A phase change material (PCM) based novel retrofitting approach in the air conditioning system to reduce building energy demand

Rahul Kumar Sharma, Ashish Kumar, Dibakar Rakshit

Summary: The study explores the use of phase change materials (PCM) as a retrofit with Heating Ventilation and Air-conditioning systems (HVAC) to reduce energy consumption and improve air quality. By incorporating PCM with specific thickness and fin configurations, significant energy savings can be achieved in comparison to standard HVAC systems utilizing R134a. This research provides policymakers with energy-efficient and sustainable solutions for HVAC systems to combat climate change.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Quantitative evaluation of radiative heat transfer from reactor surface to multiphase reaction medium in a supercritical water gasification reactor for coal

Zhenhua Ren, Xiangjin Meng, Xingang Qi, Hui Jin, Yunan Chen, Bin Chen, Liejin Guo

Summary: This paper investigates the heat transfer mechanism and factors influencing thermal radiation in the process of supercritical water gasification (SCWG) of coal, and proposes a comprehensive numerical model to simulate the process. Experimental validation results show that thermal radiation accounts for a significant proportion of the total heat exchange in the reactor and a large amount of radiant energy exists in the important spectral range of supercritical water. Enhancing radiative heat transfer can effectively increase the temperature of the reaction medium and the gasification rate.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Innovative experimental approach for the dynamic Multi-Variable investigation of Pulsating heat Pipes

Mauro Abela, Mauro Mameli, Sauro Filippeschi, Brent S. Taft

Summary: Pulsating Heat Pipes (PHP) are passive two-phase heat transfer devices with a simple structure and high heat transfer capabilities. The actual unpredictability of their dynamic behavior during startup and thermal crisis hinders their large-scale application. An experimental apparatus is designed to investigate these phenomena systematically. The results show that increasing the number of evaporator sections and condenser temperature improves the performance of PHP. The condenser temperature also affects the initial liquid phase distribution and startup time.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Development and experimental study of a 3-dimensional enhanced heat pipe radiator for cooling high-power electronic devices

Ke Gan, Ruilian Li, Yi Zheng, Hui Xu, Ying Gao, Jiajie Qian, Ziming Wei, Bin Kong, Hong Zhang

Summary: A 3-dimensional enhanced heat pipe radiator has been developed to improve heat dissipation and temperature uniformity in cooling high-power electronic components. Experimental results show that the radiator has superior heat transfer performance compared to a conventional aluminum fin radiator under different heating powers and wind speed conditions.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Optimizing heat transfer characteristics in dry centrifugal Granulation: Impact of particle population trajectory and cooling strategies

Xinyi Zhang, Shuzhong Wang, Daihui Jiang, Zhiqiang Wu

Summary: This study focuses on recovering waste heat from blast furnace slag using dry centrifugal pelletizing technology. A comprehensive two-dimensional model was developed to analyze heat transfer dynamics and investigate factors influencing heat exchange efficiency. The findings have important implications for optimizing waste heat recovery and ensuring safe operations.

APPLIED THERMAL ENGINEERING (2024)

Article Thermodynamics

Impact of jet intermittency on surface-structured heat sinks for electronics liquid cooling

Xincheng Wu, An Zou, Qiang Zhang, Zhaoguang Wang

Summary: The boosting heat generation rate of high-performance processors is challenging traditional cooling techniques. This study proposes a combined design of active jet intermittency and passive surface modification to enhance heat transfer.

APPLIED THERMAL ENGINEERING (2024)