4.6 Article

Structural and electronic properties of Ga2O3-Al2O3 alloys

Journal

APPLIED PHYSICS LETTERS
Volume 112, Issue 24, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.5036991

Keywords

-

Funding

  1. MRSEC Program of the National Science Foundation (NSF) [DMR-1121053]
  2. Air Force Office of Scientific Research [FA9550-18-1-0059]
  3. Defense Threat Reduction Agency [HDTRA-17-1-0034]
  4. U.S. Department of Energy (DOE) [DE-AC52-07NA27344]
  5. NSF MRSEC [DMR-1720256]
  6. NSF [CNS-0960316, ACI-1548562]

Ask authors/readers for more resources

Ga2O3 is emerging as an important electronic material. Alloying with Al2O3 is a viable method to achieve carrier confinement, to increase the bandgap, or to modify the lattice parameters. However, the two materials have very different ground-state crystal structures (monoclinic beta-gallia for Ga2O3 and corundum for Al2O3). Here, we use hybrid density functional theory calculations to assess the alloy stabilities and electronic properties of the alloys. We find that the monoclinic phase is the preferred structure for up to 71% Al incorporation, in close agreement with experimental phase diagrams, and that the ordered monoclinic AlGaO3 alloy is exceptionally stable. We also discuss bandgap bowing, lattice constants, and band offsets that can guide future synthesis and device design efforts. Published by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Electrical & Electronic

Low-Energy Ion-Induced Single-Event Burnout in Gallium Oxide Schottky Diodes

R. M. Cadena, D. R. Ball, E. X. Zhang, S. Islam, A. Senarath, M. W. McCurdy, E. Farzana, J. S. Speck, N. Karom, A. O'Hara, B. R. Tuttle, S. T. Pantelides, A. F. Witulski, K. F. Galloway, M. L. Alles, R. A. Reed, D. M. Fleetwood, R. D. Schrimpf

Summary: Low-energy ion-induced breakdown and single event burnout (SEB) were observed in beta-gallium oxide (beta-Ga2O3) Schottky diodes at voltages lower than expected. Different responses were observed for alpha particles, Cf-252, and heavy-ion irradiation. TCAD simulations explained the breakdown as a result of ion strikes and defect-driven breakdown due to displacement-damage-induced defects in beta-Ga2O3. First-principles calculations showed the formation of less resistive defect clusters that can lead to destruction at reduced voltages.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE (2023)

Article Physics, Applied

Structure of V-defects in long wavelength GaN-based light emitting diodes

Feng Wu, Jacob Ewing, Cheyenne Lynsky, Michael Iza, Shuji Nakamura, Steven P. DenBaars, James S. Speck

Summary: In this article, the authors used advanced characterization techniques to study the active region compositions, V-defect formation, and V-defect structure in green and red LEDs. They identified two types of V-defects, one that promotes hole injection and one that is believed to be deleterious to high-efficiency LEDs.

JOURNAL OF APPLIED PHYSICS (2023)

Article Optics

Hybrid tunnel junction enabled independent junction control of cascaded InGaN blue/green micro-light-emitting diodes

Panpan Li, Hongjian Li, Yifan Yao, Kai Shek Qwah, Mike Iza, James S. Speck, Shuji Nakamura, Steven P. Denbaars

Summary: In this work, we demonstrate the vertical integration of nitride-based blue/green micro-light-emitting diode (mu LED) stacks with independent junction control using a hybrid tunnel junction (TJ). The hybrid TJ was grown by metal-organic chemical vapor deposition (p + GaN) and molecular-beam epitaxy (n + GaN). Different junction diodes were able to generate uniform blue, green, and blue/green emissions. The peak external quantum efficiency (EQE) of the TJ blue mu LEDs and green mu LEDs with indium tin oxide contact were 30% and 12%, respectively. Carrier transportation between different junction diodes was discussed. This work suggests a promising approach for vertical mu LED integration to enhance the output power of single LED chips and monolithic mu LEDs with different emission colors and independent junction control.

OPTICS EXPRESS (2023)

Article Chemistry, Multidisciplinary

Nanoscale Periodic Trapping Sites for Interlayer Excitons Built by Deformable Molecular Crystal on 2D Crystal

Kushal Rijal, Stephanie Amos, Pavel Valencia-Acuna, Fatimah Rudayni, Neno Fuller, Hui Zhao, Hartwin Peelaers, Wai-Lun Chan

Summary: Periodic nanoscale potentials can trap interlayer excitons by utilizing the structure deformability of a 2D molecular crystal as a degree of freedom. The PTCDI lattice on MoS2 creates a spatial variation of molecular orbital energy, providing effective trapping sites for IXs.

ACS NANO (2023)

Article Physics, Applied

InGaN amber micrometer-scale light-emitting diodes with a peak external quantum efficiency of 5.5%

Panpan Li, Hongjian Li, Yunxuan Yang, Matthew S. Wong, Mike Iza, Michael J. Gordon, James S. Speck, Shuji Nakamura, Steven P. DenBaars

Summary: This article presents high-performance 10 x 10 μm InGaN amber micro-size LEDs. At 15 A cm(-2), the InGaN micro LEDs exhibit a single emission peak at 601 nm. The peak external quantum efficiency (EQE) and wall-plug efficiency are 5.5% and 3.2%, respectively. Compared to the 100 x 100 μm InGaN red micro LEDs, the 10 x 10 μm InGaN red micro LEDs maintain a similar EQE value with the same efficiency droop. These results highlight the higher efficiency potential of InGaN materials compared to common AlInGaP materials for the ultra-small size red micro LEDs required by augmented reality and virtual reality displays.

APPLIED PHYSICS EXPRESS (2023)

Article Physics, Applied

Measurement of minority carrier diffusion length in p-GaN using electron emission spectroscopy (EES)

Wan Ying Ho, Yi Chao Chow, Shuji Nakamura, Jacques Peretti, Claude Weisbuch, James S. Speck

Summary: Electron emission spectroscopy was performed on metalorganic chemical vapor deposition grown p-n(-)-n(+) junctions with p-thicknesses ranging from 50 to 300 nm, doped with [Mg] = 3.5 x 10(19) cm(-3). By measuring the decreasing emitted electron intensity from a cesiated p-GaN surface with increasing p-thickness, we were able to extract the minority carrier diffusion length of electron in p-type GaN, L-e = 2663 nm. The measured value is in good agreement with literature reported values. The extrapolated electron current at the n(-) region p-GaN interface is in reasonable agreement with the simulated electron current at the interface.

APPLIED PHYSICS LETTERS (2023)

Article Physics, Applied

Controllable nitrogen doping of MOCVD Ga2O3 using NH3

Fikadu Alema, Takeki Itoh, William Brand, Andrei Osinsky, James S. Speck

Summary: We investigated the controllable nitrogen doping of beta-Ga2O3 using ammonia diluted in nitrogen as a source of active nitrogen. The study looked at the effects of flow rate and substrate temperature on the doping efficiency and reproducibility. By increasing the flow rate of NH3/N-2, the nitrogen impurities incorporated into beta-Ga2O3 increased linearly. The presence of hydrogen in the film accompanied the nitrogen doping at low substrate temperatures.

APPLIED PHYSICS LETTERS (2023)

Article Physics, Applied

Low-efficiency-droop c-plane InGaN/GaN light-emitting diodes through the use of thick single quantum wells and doped barriers

Y. C. Chow, C. Lynsky, S. Nakamura, S. P. DenBaars, C. Weisbuch, J. S. Speck

Summary: Efficiency droop at high current densities is a common problem for InGaN-based LEDs, especially for conventional c-plane devices. This study introduces a method to reduce the internal electric fields in c-plane quantum wells by using doped barriers, which allows for a thick active region design and leads to improved LED performance.

JOURNAL OF APPLIED PHYSICS (2023)

Article Optics

Dynamics of double-peak photoluminescence in m-plane InGaN/GaN MQWs

J. Mickevic, E. Valkiunaite, Z. Podlipskas, K. Nomeika, S. Nargelas, G. Tamulaitis, Y. C. Chow, S. Nakamura, J. S. Speck, C. Weisbuch, R. Aleksieju

Summary: The dynamics of two distinct bands in non-polar m-plane InGaN/GaN multiple quantum wells (MQWs) were investigated using PL, CL, and DT spectroscopy. The shift in peak emission wavelength with increasing excitation was caused by competition between these bands. DT measurements attributed the high-energy PL band to optical transitions between ground QW states, while the low-energy PL band was associated with recombination of localized carriers. CL measurements confirmed the dispersion of deep localized states and suggested small-scale disorder. PL measurements showed that localized states are highly sensitive to indium content and structural parameters. Temperature-dependent PL studies revealed strong carrier-phonon interaction.

JOURNAL OF LUMINESCENCE (2023)

Article Nanoscience & Nanotechnology

Significant Quantum Efficiency Enhancement of InGaN Red Micro-Light-Emitting Diodes with a Peak External Quantum Efficiency of up to 6%

Panpan Li, Hongjian Li, Yifan Yao, Norleakvisoth Lim, Matthew Wong, Mike Iza, Michael J. Gordon, James S. Speck, Shuji Nakamura, Steven P. DenBaars

Summary: We have shown a significant improvement in the quantum efficiency of InGaN red micro-light-emitting diodes (mu LEDs). The peak external quantum efficiency (EQE) of the packaged 80 x 80 mu m(2) InGaN red mu LEDs increased to 6.0% at 12A/cm(2), indicating a significant advancement in the efficiency exploration of InGaN red mu LEDs. The enhancement in EQE is attributed to improved quantum efficiency, confirmed by electron-hole wavefunction overlap and photoluminescence intensity ratio analysis. Additionally, ultrasmall 5x 5 mu m(2) InGaN red mu LEDs were obtained with a high peak EQE of 4.5%.

ACS PHOTONICS (2023)

Article Physics, Applied

Microscopic Origin of Polarization Charges at GaN/(Al,Ga)N Interfaces

Su-Hyun Yoo, Mira Todorova, Jorg Neugebauer, Chris G. Van de Walle

Summary: GaN/(Al, Ga)N heterojunctions are crucial for high-electron-mobility transistors. The density of the two-dimensional electron gas (2DEG) on the GaN side is significantly enhanced by the strong polarization fields at the interface. The source of the electrons in the 2DEG is intrinsic to the overall structure and the negative charge is balanced by fixed charge on the surface, rather than surface states.

PHYSICAL REVIEW APPLIED (2023)

Article Nanoscience & Nanotechnology

Continuous Si doping in (010) and (001) β-Ga2O3 films by plasma-assisted molecular beam epitaxy

Takeki Itoh, Akhil Mauze, Yuewei Zhang, James S. Speck

Summary: Continuous Si doping in beta-Ga2O3 epitaxial films was achieved using plasma-assisted molecular beam epitaxy with a valved effusion cell for the Si source. Secondary ion mass spectroscopy results indicated flat and sharply turned Si doping profiles in beta-Ga2O3. The Si doping concentration could be controlled by adjusting the cell temperature or the valve aperture of the Si effusion cell. High crystal quality and smooth surface morphologies were observed in Si-doped beta-Ga2O3 films grown on (010) and (001) substrates. The Si-doped (001) beta-Ga2O3 epitaxial film exhibited an electron mobility of 67 cm(2)/Vs at a Hall concentration of 3 x 10(18) cm(-3).

APL MATERIALS (2023)

Article Quantum Science & Technology

Coherent Control of a Nuclear Spin via Interactions with a Rare-Earth Ion in the Solid State

Mehmet T. Uysal, Mouktik Raha, Songtao Chen, Christopher M. Phenicie, Salim Ourari, Mengen Wang, Chris G. Van de Walle, Viatcheslav V. Dobrovitski, Jeff D. Thompson

Summary: In this work, coherent coupling between the electron spin of a single Er3+ ion and a single I = 1/2 nuclear spin in the solid-state host crystal, which is a fortuitously located proton (1H), is demonstrated. The nuclear spin is controlled using dynamical-decoupling sequences applied to the electron spin, allowing for one- and two-qubit gate operations. The longer coherence time of the nuclear spin, compared to the electron spin, is crucial for combining long-lived nuclear spin quantum registers with telecom-wavelength emitters for long-distance quantum repeaters.

PRX QUANTUM (2023)

Article Physics, Multidisciplinary

Trap-Assisted Auger-Meitner Recombination from First Principles

Fangzhou Zhao, Mark E. Turiansky, Audrius Alkauskas, Chris G. Van de Walle

Summary: Trap-assisted Auger-Meitner recombination is highlighted as a dominant nonradiative process in wide-band-gap materials, and a first-principles methodology is presented to determine the rates of this process in semiconductors or insulators due to defects or impurities.

PHYSICAL REVIEW LETTERS (2023)

Article Materials Science, Multidisciplinary

Migration of Ga vacancies and interstitials in ?-Ga2O3

Ymir K. Frodason, Joel B. Varley, Klaus Magnus H. Johansen, Lasse Vines, Chris G. Van de Walle

Summary: Pathways and energy barriers for the migration of Ga vacancies (VGa) and Ga interstitials (Gai) in-Ga2O3 have been studied using hybrid functional calculations and the nudged elastic band method. A mechanism for the transformation of VGa between different split configurations has been described. The overall migration barriers for VGa and Gai in different crystal directions have been determined. The results provide insights into the thermally activated recovery processes in irradiated material.

PHYSICAL REVIEW B (2023)

No Data Available