4.7 Article

Adaptive fuzzy output feedback stabilization control for the underactuated surface vessel

Journal

APPLIED OCEAN RESEARCH
Volume 74, Issue -, Pages 40-48

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apor.2018.01.015

Keywords

Underactuated surface vessel; Adaptive fuzzy system; Input saturation; Auxiliary dynamic function

Ask authors/readers for more resources

This paper designs an adaptive fuzzy stabilization controller for the underactuated surface vessel in the presence of unknown time varying environment disturbances and input saturation. By combining adaptive fuzzy system and auxiliary dynamic function, a stabilization control scheme is developed via vectorial backstepping technique and Lyapunov direct method. To begin with, based on the diffeomorphism equivalent transformation, the stabilization problem of underactuated surface vessel can be transformed into the stabilization analysis of two subsystem. Further, the adaptive fuzzy system is employed to approximate the uncertain term induced by the unknown time varying environment disturbances in the control law. In particularly, an auxiliary dynamic function is exploited to deal with the input saturation. It is proved that the proposed adaptive fuzzy output feedback controller can stabilize the vessel to desired equilibrium origin, while guaranteeing the uniform ultimate boundedness of all closed loop signals in the underactuated system. Finally, simulation results are given to demonstrate the effectiveness of the proposed control approach. (C) 2018 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available