4.8 Article

Controlling the Polymer Microstructure in Anionic Polymerization by Compartmentalization

Journal

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
Volume 57, Issue 9, Pages 2483-2487

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/anie.201710417

Keywords

anionic polymerization; aziridines; compartmentalization; copolymeruzation; emulsions

Funding

  1. Deutsche Forschungsgemeinschaft [DFG WU750/7-1]
  2. BMBF/MPG network MaxSynBio

Ask authors/readers for more resources

An ideal random anionic copolymerization is forced to produce gradient structures by physical separation of two monomers in emulsion compartments. One monomer (M) is preferably soluble in the droplets, while the other one (D) prefers the continuous phase of a DMSO-in-cyclohexane emulsion. The living anionic copolymerization of two activated aziridines is thus confined to the DMSO compartments as polymerization occurs selectively in the droplets. Dilution of the continuous phase adjusts the local concentration of monomer D in the droplets and thus the gradient of the resulting copolymer. The copolymerizations in emulsion are monitored by real-time H-1 NMR kinetics, proving a change of the reactivity ratios of the two monomers upon dilution of the continuous phase from ideal random to adjustable gradients by simple dilution.C

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Correction Chemistry, Multidisciplinary

Aerobic Photobiocatalysis Enabled by Combining Core-Shell Nanophotoreactors and Native Enzymes (vol 144, pg 7320, 2022)

Wenxin Wei, Francesca Mazzotta, Ingo Lieberwirth, Katharina Landfester, Calum T. J. Ferguson, Kai A. I. Zhang

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Nanoscience & Nanotechnology

Tunable Photocatalytic Selectivity by Altering the Active Center Microenvironment of an Organic Polymer Photocatalyst

Julian Heuer, Thomas Kuckhoff, Rong Li, Katharina Landfester, Calum T. J. Ferguson

Summary: The production of photocatalytic self-assembled amphiphilic polymers enables selective control over reactions based on the substrate's physical properties. By polymerizing benzothiadiazole-based photocatalysts into hydrophilic or hydrophobic compartments, we achieved stark differences in reactivity for polar substrates but similar performance for hydrophobic substrates. Additionally, the use of secondary swelling solvents led to a significant increase in conversion for a radical carbon-carbon coupling reaction.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Visible-Light-Promoted Switchable Selective Oxidations of Styrene Over Covalent Triazine Frameworks in Water

Cyrine Ayed, Jie Yin, Katharina Landfester, Kai A. I. Zhang

Summary: Using photocatalytic oxidation to convert basic chemicals into high value compounds in environmentally benign reaction media is a current focus in catalytic research. The challenge of gaining controllability over product formation selectivity was addressed by designing covalent triazine frameworks as recyclable photocatalysts. Controlled selectivity was achieved by activating or deactivating specific photogenerated oxygen species. This study demonstrates a promising approach for achieving switchable product formation selectivity for challenging oxidation reactions in pure water.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Biochemistry & Molecular Biology

Controlled Membrane Transport in Polymeric Biomimetic Nanoreactors

Shoupeng Cao, Tsvetomir Ivanov, Marina de Souza Melchiors, Katharina Landfester, Lucas Caire da Silva

Summary: The article discusses the importance of polymersome-based biomimetic nanoreactors (PBNs) in nanomedicine and cell mimicry. It highlights the state of the art in functional polymersomes as biomimetic nanoreactors with membrane-controlled transport.

CHEMBIOCHEM (2023)

Article Engineering, Environmental

Reversible acetalization of cellulose: A platform for bio-based materials with adjustable properties and biodegradation

Stefan Peil, Hubert Gojzewski, Frederik R. Wurm

Summary: Bio-based and biodegradable cellulose acetals, with their reversible modification of cellulose, provide a versatile and sustainable alternative to non-degradable polyolefin plastics. These cellulose acetals are characterized by solubility in common organic solvents, adjustable physical properties, and the ability to undergo full degradation in compost and enzymatic processes. With the increasing urgency of climate change and plastic pollution, these cellulose derivatives offer a promising solution for a more sustainable future.

CHEMICAL ENGINEERING JOURNAL (2023)

Correction Chemistry, Multidisciplinary

Aerobic Photobiocatalysis Enabled by Combining Core-Shell Nanophotoreactors and Native Enzymes(vol 144,pg 7320, 2022)

Wenxin Wei, Francesca Mazzotta, Ingo Lieberwirth, Katharina Landfester, Calum T. J. Ferguson, Kai A. I. Zhang

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

pH-Triggered Recovery of Organic Polymer Photocatalytic Particles for the Production of High Value Compounds and Enhanced Recyclability

Rong Li, Julian Heuer, Thomas Kuckhoff, Katharina Landfester, Calum T. J. Ferguson

Summary: Pseudo-homogeneous polymeric photocatalysts are efficient and tunable materials with easily accessible catalytic centers. Creating highly efficient photocatalytic materials that can be separated and recovered quickly is a critical challenge. This study presents pH-responsive photocatalytic nanoparticles that are active and well-dispersed under acidic conditions but aggregate upon pH elevation, allowing easy recovery. These responsive photocatalytic polymers can be used in various transformations and can accelerate the reaction rate of anionic substrates.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Polymer Science

The microstructure of polyphosphoesters controls polymer hydrolysis kinetics from minutes to years

Timo Rheinberger, Mareike Deuker, Frederik R. Wurm

Summary: In this study, the degradation rate of polyphosphoesters (PPEs) with different side-chain structures under different pH conditions was investigated. The degradation mechanism was found to be influenced by the type and size of the side-chain and pH. By modifying the structure of the polyphosphonates or introducing additional breaking points, the half-life of the polymer could be tuned. This study highlights the versatile stability and controllability of water-soluble PPEs, making them promising for various applications, such as tissue regrowth.

EUROPEAN POLYMER JOURNAL (2023)

Article Pharmacology & Pharmacy

Advanced Skin Antisepsis: Application of UVA-Cleavable Hydroxyethyl Starch Nanocapsules for Improved Eradication of Hair Follicle-Associated Microorganisms

Loris Busch, Anna Maria Hanuschik, Yuri Avlasevich, Katrin Darm, Elisa F. F. Hochheiser, Christian Kohler, Evgeny A. A. Idelevich, Karsten Becker, Peter Rotsch, Katharina Landfester, Maxim E. E. Darvin, Martina C. C. Meinke, Cornelia M. M. Keck, Axel Kramer, Paula Zwicker

Summary: Hair follicles are important drug delivery targets for skin antisepsis due to their high concentration of skin microbiome. Nanoparticles can penetrate deeply into hair follicles and can be triggered to release drugs through various mechanisms. The study introduces UV-responsive nanocapsules containing hydroxyethyl starch, which demonstrated efficient release of ethanol and a strong reduction in microbial load on porcine ear skin. The findings suggest the potential for advanced skin antisepsis using UVA-responsive nanocapsules.

PHARMACEUTICS (2023)

Article Nanoscience & Nanotechnology

Polymeric Microreactors with pH-Controlled Spatial Localization of Cascade Reactions

Tsvetomir Ivanov, Shoupeng Cao, Nitin Bohra, Marina de Souza Melchiors, Lucas Caire da Silva, Katharina Landfester

Summary: We have developed a fully polymeric microreactor with a coacervate-in-vesicle architecture that exhibits an adaptive response to pH. The microreactor allows for the dynamic modulation of internal subcompartments, resulting in the sequestration and localization of enzymes and reaction products driven by environmental cues.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Liposomal Enzyme Nanoreactors Based on Nanoconfinement for Efficient Antitumor Therapy

Ran Wang, Yingjie Yu, Meiyu Gai, Ana Mateos-Maroto, Svenja Morsbach, Xiang Xia, Maomao He, Jiangli Fan, Xiaojun Peng, Katharina Landfester, Shuai Jiang, Wen Sun

Summary: Enzymatic reactions can effectively inhibit tumor growth by consuming tumor nutrients and producing cytotoxic species. Liposomal nanoreactors that perform enzymatic cascade reactions have been developed, increasing the overall efficiency of the reaction. This biomimetic approach provides a promising direction for developing catalytic nanomedicines in antitumor therapy.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Review Biochemistry & Molecular Biology

Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy

Jenny Schunke, Volker Mailaender, Katharina Landfester, Michael Fichter

Summary: Finding a long-term cure for tumor patients remains challenging. Immunotherapies show promise by activating the immune system against tumors and modulating the tumor microenvironment. However, current methods often fail to sufficiently activate the immune system and have limitations such as drug degradation and non-specific uptake. Encapsulating immunomodulatory molecules into nanocarriers offers a solution by protecting cargo and targeting uptake by antigen-presenting cells. This approach allows for versatile immune system stimulation and improved anti-tumor responses with reduced toxicity.

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (2023)

Article Polymer Science

Polyester Brush Coatings for Circularity: Grafting, Degradation, and Repeated Growth

Maria Brio Perez, Mark A. Hempenius, Sissi de Beer, Frederik R. Wurm

Summary: Polymer brushes are widely used for versatile surface modifications but most of them are nonbiodegradable. In this study, the researchers presented a synthetic strategy for grafting degradable polymer brushes via organocatalytic surface-initiated ring-opening polymerization. The polymer brushes produced were able to hydrolyze with controlled patterns and be regrown on the same substrate after degradation. The research showed that the polyester brush coatings exhibited different levels of hydrolytic stability and degradation mechanism, making them a potential alternative to nondegradable polymer brushes.

MACROMOLECULES (2023)

Article Chemistry, Multidisciplinary

Water-soluble polyphosphonate-based bottlebrush copolymers via aqueous ring-opening metathesis polymerization

Diego A. Resendiz-Lara, Suna Azhdari, Hubert Gojzewski, Andre H. Groeschel, Frederik R. Wurm

Summary: In this work, water-soluble and degradable bottlebrush polymers were synthesized via ROMP using polyphosphoesters (PPEs) as the base material. PPE-macromonomers were first synthesized via organocatalytic anionic ring-opening polymerization and then used in ROMP to produce well-defined bottlebrush polymers. The resulting polymers showed good solubility in water and were degradable, making them promising for various biomedical applications.

CHEMICAL SCIENCE (2023)

Article Chemistry, Multidisciplinary

Assembly of Multi-Compartment Cell Mimics by Droplet-Based Microfluidics

Tsvetomir Ivanov, Shoupeng Cao, Thao P. Doan-Nguyen, Heloisa Bremm Madalosso, Lucas Caire da Silva, Katharina Landfester

Summary: There is an increasing interest in multi-compartment systems that mimic the structure and function of biological cells. Droplet-based microfluidics (DBM) has emerged as a powerful technique for creating cell-like systems with multi-compartment architectures and biomimetic functionality. DBM has proven to be a reliable method for generating populations of cell-mimics with a compartment-in-compartment structure, some of which have adaptable properties that resemble the dynamic properties of natural cells. This review highlights the progress made in the construction of hierarchical cell-mimics using DBM methods.

CHEMSYSTEMSCHEM (2023)

No Data Available