4.7 Article

Inhibition of Rho-kinase differentially affects axon regeneration of peripheral motor and sensory nerves

Journal

EXPERIMENTAL NEUROLOGY
Volume 263, Issue -, Pages 28-38

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2014.09.012

Keywords

Regeneration; Nerve injury; Cytoskeleton; Remyelination

Categories

Funding

  1. Deutscher Akademischer Austausch Dienst (DAAD)
  2. National Institutes of Health [NS42888, NS054962]
  3. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS042888, R01NS054962] Funding Source: NIH RePORTER

Ask authors/readers for more resources

The small GTPase RhoA and its down-stream effector Rho-kinase (ROCK) are important effector molecules of the neuronal cytoskeleton. Modulation of the RhoA/ROCK pathway has been shown to promote axonal regeneration, however in vitro and animal studies are inconsistent regarding the extent of axonal outgrowth induced by pharmacological inhibition of ROCK. We hypothesized that injury to sensory and motor nerves result in diverse activation levels of RhoA, which may impact the response of those nerve fiber modalities to ROCK inhibition. We therefore examined the effects of Y-27632, a chemical ROCK inhibitor, on the axonal outgrowth of peripheral sensory and motor neurons grown in the presence of growth-inhibiting chondroitin sulfate proteoglycans (CSPGs). In addition we examined the effects of three different doses of Y-27632 on nerve regeneration of motor and sensory nerves in animal models of peripheral nerve crush. In vitro, sensory neurons were less responsive to Y-27632 compared to motor neurons in a non-growth permissive environment. These differences were associated with altered expression and activation of RhoA in sensory and motor axons. In vivo, systemic treatment with high doses of Y-27632 significantly enhanced the regeneration of motor axons over short distances, while the regeneration of sensory fibers remained largely unchanged. Our results support the concept that in a growth non-permissive environment, the regenerative capacity of sensory and motor axons is differentially affected by the RhoA/ROCK pathway, with motor neurons being more responsive compared to sensory. Future treatments, that are aimed to modulate RhoA activity, should consider this functional diversity. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available