4.8 Article

Color-Tunable and High-Efficiency Dye-Encapsulated Metal-Organic Framework Composites Used for Smart White-Light-Emitting Diodes

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 22, Pages 18910-18917

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b04937

Keywords

luminescent metal-organic frameworks; rhodamine dyes; cation exchange; color-tunable; white LEDs

Funding

  1. National Natural Science Foundation of China [51572232, 51561135015, 51502254, 61575182]
  2. National Key Research and Development Program (MOST) [2017YFB0404301]

Ask authors/readers for more resources

Luminescent metal-organic frameworks (MOFs) (typically dye-encapsulated MOFs) are considered as one kind of interesting downconversion materials for white-light-emitting diodes (LEDs), but their quantum efficiency (QE) is not sufficient and thus needs to be significantly enhanced for practical applications. In this study, we successfully synthesized a series of Rh@bio-MOF-1 (Rh = rhodamine) with an internal QE as high as similar to 79% via a solvothermal reaction followed by cation exchanges. The high efficiency of the Rh@bio-MOF-1 composites was attributable to the high intrinsic luminescent efficiency of the selected Rh dyes, the confinement effect in the bio-MOF-1 host, and the uniform particle morphology. The emission maximum could be continuously tuned from 550 to 610 nm by controlling the species and concentration of encapsulated dye molecules, showing great color tunability of the dye-encapsulated MOFs. The emission lifetime of similar to 7 ns was 1 or 2 magnitude orders shorter than that of Ce3+- or Eu2+-doped inorganic phosphors, allowing for visible light communication (VLC). White LEDs, fabricated by using the synthesized Rh@bio-MOF-1 composite and inorganic phosphors of green (Ba,Sr)(2)SiO4:Eu2+ and red CaAlSiN3:Eu2+, exhibited a high color rendering index of 80-94, a luminous efficacy of 94-156 lm/W, and an excellent stability in color point against drive current. The Rh@bio-MOF-1 composites with tunable colors, short emission lifetime, and high QE are expected to be used for smart white LEDs with multifunctions of both lighting and VLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available