4.6 Article

Why Drugs Fail in Late Stages of Development: Case Study Analyses from the Last Decade and Recommendations

Journal

AAPS JOURNAL
Volume 20, Issue 3, Pages -

Publisher

SPRINGER
DOI: 10.1208/s12248-018-0204-y

Keywords

biomarker; clinical trial; drug development; efficacy; pharmacokinetics; safety

Ask authors/readers for more resources

New drug development is both resource and time intensive, where later clinical stages result in significant costs. We analyze recent late-stage failures to identify drugs where failures result from inadequate scientific advances as well as drugs where we believe pitfalls could have been avoided. These can be broadly classified into two categories: 1) where science is mature and the failures can be avoided through rigorous and prospectively determined decision-making criteria, scientific curiosity, and discipline to follow up on emerging findings; and 2) where problems encountered in Phase 3 failures cannot be explained at this time, as the science is not sufficiently advanced and companies/investigators need to recognize the possibility of deficiency of our knowledge. Through these case studies, key themes critical for successful drug development emerge-understanding the therapeutic pathway including receptor and signaling biology, pharmacological responses related to safety and efficacy, pharmacokinetics of the drug and exposure at target site, optimum dose, and dosing regimen; and identification of patient sub-populations likely to respond and will have a favorable benefit-risk profile, design of clinical trials, and a quantitative framework that can guide data-driven decision making. It is essential that the right studies are conducted early in the development process to answer the key questions, with the emphasis on learning in the early stages of development, whereas Phase 3 should be reserved for confirming the safety and efficacy. Utilization of innovative technology in identifying patients based on molecular signature of their disease, rapid assessment of pharmacological response, mechanistic modeling of emerging data, seamless operational processes to reduce start-up and wind-down time for clinical trials through use of electronic health records and data mining, and development of novel and objective clinical efficacy endpoints are some concepts for improving the success rate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available