4.4 Article

Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactate-co-glycolate) and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) in Escherichia coli

Journal

MICROBIAL BIOTECHNOLOGY
Volume 10, Issue 6, Pages 1353-1364

Publisher

WILEY
DOI: 10.1111/1751-7915.12721

Keywords

-

Funding

  1. Ministry of Science, ICT and Future Planning [NRF-2012M1A2A20 26556]

Ask authors/readers for more resources

Poly(lactate-co-glycolate), PLGA, is a representative synthetic biopolymer widely used in medical applications. Recently, we reported one-step direct fermentative production of PLGA and its copolymers by metabolically engineered Escherichia coli from xylose and glucose. In this study, we report development of metabolically engineered E.coli strains for the production of PLGA and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) having various monomer compositions from xylose as a sole carbon source. To achieve this, the metabolic flux towards Dahms pathway was modulated using five different synthetic promoters for the expression of Caulobacter crescentus XylBC. Further metabolic engineering to concentrate the metabolic flux towards d-lactate and glycolate resulted in production of PLGA and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) with various monomer fractions from xylose. The engineered E.coli strains produced polymers containing 8.8-60.9mol% of glycolate up to 6.93gl(-1) by fed-batch cultivation in a chemically defined medium containing xylose. Finally, the biocompatibility of poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) was confirmed by live/dead assay using human mesenchymal stem cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available