4.7 Article

Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

Journal

JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS
Volume 122, Issue 11, Pages 8661-8682

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1002/2017JC012923

Keywords

air-sea oxygen fluxes; Argo profiling floats; Southern Ocean seasonal cycles

Categories

Funding

  1. National Science Foundation, Division of Polar Programs [NSF PLR -1425989]
  2. NOAA [NA15OAR4320063]

Ask authors/readers for more resources

The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -18380 Tmol yr(-1) (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -9430 Tmol O-2 yr(-1)) and Seasonal Ice Zone (SIZ, -1119.3 Tmol O-2 yr(-1)). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 4729 Tmol O-2 yr(-1) that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 +/- 12 Tmol O-2 yr(-1). Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available