4.2 Article

Targeted delivery of mesoporous silica nanoparticles loaded monastrol into cancer cells: an in vitro study

Journal

APPLIED NANOSCIENCE
Volume 7, Issue 8, Pages 549-555

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13204-017-0593-8

Keywords

Mesoporous silica nanoparticles; Monastrol; KSP; Anticancer; Drug delivery

Ask authors/readers for more resources

Monastrol is a simple low molecular weight dihydropyrimidine-based kinesin Eg5 inhibitor. Its low cellular activity and its non-drug-like properties have impeded its further development. In a previous report, we have reported various topological parameters to improve the pharmacokinetic properties of monastrol. The purpose of this study is to determine the loading and release feasibility of poorly water-soluble monastrol into the synthesized mesoporous silica nanoparticles (MSNs). The synthesis of MSNs was attained by the ammonia-catalysed hydrolysis and condensation of TEOS in ethanol using polysorbate-80 as surfactant. These were characterized by BET surface area and pore size distribution analyses, SEM, XRD, UV and FTIR spectroscopy. The synthesized monastrol was successfully loaded on MSNPs and coated by hydrogels for successful controlled drug delivery. In vitro release studies are done by simple dialysis method. Monastrol-loaded MSNPs were tested on human cervical epithelial malignant carcinoma (HeLa) cell lines for studying their anticancer activity. Our presented system described a reliable method for targeted delivery of monastrol into the cancer cells in vitro.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available