4.6 Article

A Time-Varying Potential-Based Demand Response Method for Mitigating the Impacts of Wind Power Forecasting Errors

Journal

APPLIED SCIENCES-BASEL
Volume 7, Issue 11, Pages -

Publisher

MDPI AG
DOI: 10.3390/app7111132

Keywords

wind power forecasting error (WPFE); demand response (DR); DR potential (DRP); wind accommodation

Funding

  1. National Natural Science Foundation of China [51577030]

Ask authors/readers for more resources

The uncertainty of wind power results in wind power forecasting errors (WPFE) which lead to difficulties in formulating dispatching strategies to maintain the power balance. Demand response (DR) is a promising tool to balance power by alleviating the impact of WPFE. This paper offers a control method of combining DR and automatic generation control (AGC) units to smooth the system's imbalance, considering the real-time DR potential (DRP) and security constraints. A schematic diagram is proposed from the perspective of a dispatching center that manages smart appliances including air conditioner (AC), water heater (WH), electric vehicle (EV) loads, and AGC units to maximize the wind accommodation. The presented model schedules the AC, WH, and EV loads without compromising the consumers' comfort preferences. Meanwhile, the ramp constraint of generators and power flow transmission constraint are considered to guarantee the safety and stability of the power system. To demonstrate the performance of the proposed approach, simulations are performed in an IEEE 24-node system. The results indicate that considerable benefits can be realized by coordinating the DR and AGC units to mitigate the WPFE impacts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available