4.6 Article

Inhibition of Farnesyltransferase Potentiates NOTCH-Targeted Therapy against Glioblastoma Stem Cells

Journal

STEM CELL REPORTS
Volume 9, Issue 6, Pages 1948-1960

Publisher

CELL PRESS
DOI: 10.1016/j.stemcr.2017.10.028

Keywords

-

Funding

  1. NIH [R01CA166492, R01NS083629]
  2. American Brain Tumor Association
  3. Southeastern Brain Tumor Foundation
  4. Voice Against Brain Cancer Foundation

Ask authors/readers for more resources

Accumulating evidence suggests that cancer cells with stem cell-like phenotypes drive disease progression and therapeutic resistance in glioblastoma (GBM). NOTCH regulates self-renewal and resistance to chemoradiotherapy in GBM stem cells. However, NOTCH-targeted gamma-secretase inhibitors (GSIs) exhibited limited efficacy in GBM patients. We found that farnesyltransferase inhibitors (FTIs) significantly improved sensitivity to GSIs. This combination showed significant antineoplastic and radiosensitizing activities in GBM stem cells, whereas non-stem GBM cells were resistant. These combinatorial effects were mediated, at least partially, through inhibition of AKT and cell-cycle progression. Using subcutaneous and orthotopic GBM models, we showed that the combination of FTIs and GSIs, but not either agent alone, significantly reduced tumor growth. With concurrent radiation, this combination induced a durable response in a subset of orthotopic tumors. These findings collectively suggest that the combination of FTIs and GSIs is a promising therapeutic strategy for GBM through selectively targeting the cancer stem cell subpopulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available