4.5 Article

Extrinsic Spin Hall Effect in Cu1-xPtx

Journal

PHYSICAL REVIEW APPLIED
Volume 8, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.8.024034

Keywords

-

Funding

  1. National Research Foundation, Prime Minister's Office, Singapore, under its Competitive Research Programme (CRP) [NRF CRP12-2013-01]
  2. Grants-in-Aid for Scientific Research [16F16325] Funding Source: KAKEN

Ask authors/readers for more resources

We experimentally study the effects on the spin Hall angle due to systematic addition of Pt into the light metal Cu. We perform spin-torque ferromagnetic resonance measurements on a Py/Cu1-xPtx bilayer and find that as the Pt concentration increases, the spin Hall angle of Cu1-xPtx increases. Moreover, only 28% Pt in Cu1-xPtx can give rise to a spin Hall angle close to that of Pt. We further extract the spin Hall resistivity of Cu1-xPtx for different Pt concentrations and find that the contribution of skew scattering is larger for lower Pt concentrations, while the side-jump contribution is larger for higher Pt concentrations. From a technological perspective, since Cu1-xPtx can sustain high processing temperatures, and Cu is the most common metallization element in the Si platform, it is easier to integrate the Cu1-xPtx-based spintronic devices into existing Si fabrication technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available