4.5 Article

Microstructure Formation and Resistivity Change in CuCr during Rapid Solidification

Journal

METALS
Volume 7, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/met7110478

Keywords

CuCr; supersaturation; solid solution; texture; powder metallurgy; microstructure; contact material; vacuum interrupter; heat affected volume

Funding

  1. Carl-Zeiss-Foundation
  2. Karlsruhe Nano Micro Facility (KNMF)
  3. Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT)
  4. Bruker D8 through the Helmholtz Energy Materials Characterization Platform (HEMCP)
  5. Helmholtz Association

Ask authors/readers for more resources

The formation of the surface-near microstructure after a current interruption of CuCr contact materials in a vacuum interrupter is characterized by a fast heating and subsequently rapid solidification process. In the present article, we reveal and analyse the formation of two distinct microstructural regions that result from the heat, which is generated and dissipated during interruption. In the topmost region, local and global texture, as well as the resulting microstructure, indicate that both Cu and Cr were melted during rapid heating and solidification whereas in the region underneath, only Cu was melted and elongated Cu-grains solidified with the <001>-direction perpendicularly aligned to the surface. By analysing the lattice parameter of the Cu solid solution, a supersaturation of the solid solution with about 2.25 at % Cr was found independent if Cu was melted solely or together with the Cr. The according reduction of electrical conductivity in the topmost region subsequent to current interruption and the resulting heat distribution are discussed based on these experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available