4.3 Article

Adsorptive Removal of Copper by Using Surfactant Modified Laterite Soil

Journal

JOURNAL OF CHEMISTRY
Volume 2017, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2017/1986071

Keywords

-

Funding

  1. Vietnam National University, Hanoi (VNU) [QG.16.12]

Ask authors/readers for more resources

Removal of copper ion (Cu2+) by using surfactant modified laterite (SML) was investigated in the present study. Characterizations of laterite were examined by X-ray diffraction (XRD), Fourier transforminfrared spectroscopy (FT-IR), inductively coupled plasma mass spectrometry (ICP-MS), and total carbon analysis. The optimum conditions for removal of Cu2+ by adsorption using SMLwere systematically studied and found as pH 6, contact time 90 min, adsorbent dosage 5mg/mL, and ionic strength 10mM NaCl. The equilibrium concentration of copper ions was measured by flame atomic absorption spectrometry (F-AAS). Surface modification of laterite by anionic surfactant sodium dodecyl sulfate (SDS) induced a significant increase of the removal efficiency of Cu2+. The surface modifications of laterite by preadsorption of SDS and sequential adsorption of Cu2+ were also evaluated by XRD and FT-IR. The adsorption of Cu2+ onto SML increases with increasing NaCl concentration from 1 to 10 mM, but at high salt concentration this trend is reversed because desorption of SDS fromlaterite surface was enhanced by increasing salt concentration. Experimental results of Cu2+/SML adsorption isotherms at different ionic strengths can be represented well by a two-step adsorption model. Based on adsorption isotherms, surface charge effects, and surface modification, we suggest that the adsorption mechanism of Cu2+ onto SML was induced by electrostatic attraction between Cu2+ and the negatively charged SML surface and nonelectrostatic interactions between Cu2+ and organic substances in the laterite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available