4.5 Article

Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills

Journal

ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS
Volume 19, Issue 9, Pages 1117-1125

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7em00125h

Keywords

-

Funding

  1. project entitled Oil spill Environmental Impact Assessment and Environmental Restoration - Ministry of Oceans and Fisheries of Korea [PM56951]
  2. National Research Foundation of Korea - Korea government (MEST) [2014R1A2A1A11052838]
  3. Canada Research Chair program
  4. High Level Foreign Experts program - State Administration of Foreign Experts Affairs, the P.R. China [GDT20143200016]
  5. Einstein Professor Program of the Chinese Academy of Sciences
  6. Distinguished Visiting Professorship in the School of Biological Sciences of the University of Hong Kong
  7. National Research Foundation of Korea [2014R1A2A1A11052838] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available