4.8 Article

High performance communication by people with paralysis using an intracortical brain-computer interface

Journal

ELIFE
Volume 6, Issue -, Pages -

Publisher

ELIFE SCIENCES PUBLICATIONS LTD
DOI: 10.7554/eLife.18554

Keywords

-

Categories

Funding

  1. Craig H. Neilsen Foundation
  2. Stanford Medical Scientist Training Program
  3. U.S. Department of Veterans [B6453R]
  4. Massachusetts General Hospital Deane Institute for Integrated Research on Atrial Fibrillation and Stroke
  5. National Institute on Deafness and Other Communication Disorders [R01DC009899, R01DC014034]
  6. Eunice Kennedy Shriver National Institute of Child Health and Human Development [N01HD10018, N01HD53403]
  7. National Institute of Neurological Disorders and Stroke [R01NS066311]
  8. Stanford University
  9. Stanford Institute for Neuro-Innovation and Translational Neuroscience

Ask authors/readers for more resources

Brain-computer interfaces (BCIs) have the potential to restore communication for people with tetraplegia and anarthria by translating neural activity into control signals for assistive communication devices. While previous pre-clinical and clinical studies have demonstrated promising proofs-of-concept (Serruya et al., 2002; Simeral et al., 2011; Bacher et al., 2015; Nuyujukian et al., 2015; Aflalo et al., 2015; Gilja et al., 2015; Jarosiewicz et al., 2015; Wolpaw et al., 1998; Hwang et al., 2012; SpOler et al., 2012; Leuthardt et al., 2004; Taylor et al., 2002; Schalk et al., 2008; Moran, 2010; Brunner et al., 2011; Wang et al., 2013; Townsend and Platsko, 2016; Vansteensel et al., 2016; Nuyujukian et al., 2016; Carmena et al., 2003; Musallam et al., 2004; Santhanam et al., 2006; Hochberg et al., 2006; Ganguly et al., 2011; O'Doherty et al., 2011; Gilja et al., 2012), the performance of human clinical BCI systems is not yet high enough to support widespread adoption by people with physical limitations of speech. Here we report a highperformance intracortical BCI (iBCI) for communication, which was tested by three clinical trial participants with paralysis. The system leveraged advances in decoder design developed in prior pre-clinical and clinical studies (Gilja et al., 2015; Kao et al., 2016; Gilja et al., 2012). For all three participants, performance exceeded previous iBCls (Bacher et al., 2015; Jarosiewicz et al., 2015) as measured by typing rate (by a factor of 1.4-4.2) and information throughput (by a factor of 2.2-4.0). This high level of performance demonstrates the potential utility of iBCIs as powerful assistive communication devices for people with limited motor function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available