4.7 Article

Considerations on pig models for appetite, metabolic syndrome and obese type 2 diabetes: From food intake to metabolic disease

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 759, Issue -, Pages 231-239

Publisher

ELSEVIER
DOI: 10.1016/j.ejphar.2015.03.044

Keywords

Pig; Swine; Ethics; Food intake; Gut-brain axis; Obesity; Metabolic syndrome; Type 2 diabetes; Cardiovascular disease

Ask authors/readers for more resources

(Mini)pigs have proven to be a valuable animal model in nutritional, metabolic and cardiovascular research and in some other biomedical research areas (toxicology, neurobiology). The large resemblance of (neuro)anatomy, the gastro-intestinal tract, body size, body composition, and the omnivorous food choice and appetite of the pig are additional reasons to select this large animal species for (preclinical) nutritional and pharmacological studies. Both humans and pigs are prone to the development of obesity and related cardiovascular diseases such as hypertension and atherosclerosis. Bad cholesterol (LDL) is high and good cholesterol (HDL) is low in pigs, like in humans. Disease-relevant pig models fill the gap between rodent models and primate species including humans. Diet-induced obese pigs show a phenotype related to the metabolic syndrome including high amounts of visceral fat, fatty organs, insulin resistance and high blood pressure. However, overt hyperglycaemia does not develop within 6 months after initiation of high sugar-fat feeding. Therefore, to accelerate the induction of obese type 2 diabetes, obese pigs can be titrated with streptozotocin, a chemical agent which selectively damages the insulin-producing pancreatic beta-cells. However, insulin is required to maintain obesity. With proper titration of streptozotocin, insulin secretion can be restrained at such a level that hyperglycaemia will be induced but lipolysis is still inhibited due to the fact that inhibition of lipolysis is more sensitive to insulin compared to stimulation of glucose uptake. This strategy may lead to a stable hyperglycaemic, non-ketotic obese pig model which remains anabolic with time without the necessity of exogenous insulin treatment. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available