4.4 Article

Interactions of Protonated Guanidine and Guanidine Derivatives with Multiply Deprotonated RNA Probed by Electrospray Ionization and Collisionally Activated Dissociation

Journal

CHEMISTRYOPEN
Volume 6, Issue 6, Pages 739-750

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/open.201700143

Keywords

collisionally activated dissociation; electrospray ionization; guanidinium; mass spectrometry; RNA

Funding

  1. Austrian Science Fund (FWF) [P27347, P30087]
  2. Austrian Science Fund (FWF) [P27347] Funding Source: Austrian Science Fund (FWF)

Ask authors/readers for more resources

Interactions of ribonucleic acid (RNA) with guanidine and guanidine derivatives are important features in RNA-protein and RNA-drug binding. Here we have investigated noncovalently bound complexes of an 8-nucleotide RNA and six different ligands, all of which have a guanidinium moiety, by using electrospray ionization (ESI) and collisionally activated dissociation (CAD) mass spectrometry (MS). The order of complex stability correlated almost linearly with the number of ligand atoms that can potentially be involved in hydrogen-bond or salt-bridge interactions with the RNA, but not with the proton affinity of the ligands. However, ligand dissociation of the complex ions in CAD was generally accompanied by proton transfer from ligand to RNA, which indicated conversion of salt-bridge into hydrogen-bond interactions. The relative stabilities and dissociation pathways of [RNA+mL-nH](n-) complexes with different stoichiometries (m=1-5) and net charge (n= 2-5) revealed both specific and unspecific ligand binding to the RNA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available