4.5 Article

Differential effects of silver and iron oxide nanoparticles on IAPP amyloid aggregation

Journal

BIOMATERIALS SCIENCE
Volume 5, Issue 3, Pages 485-493

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6bm00764c

Keywords

-

Funding

  1. ARC Project [CE140100036]
  2. Monash Institute of Pharmaceutical Sciences

Ask authors/readers for more resources

Recent studies have shown promise on the use of small molecules and nanoparticles (NPs) for the inhibition of protein aggregation, a hallmark of neurodegenerative diseases and type 2 diabetes (T2D). Towards this end here we show the differential effects of silver and iron oxide nanoparticles (AgNPs and IONPs) on the mesoscopic properties of human islet amyloid polypeptide (IAPP) aggregation associated with T2D. Both citrate-and branched polyethyleneimine-coated AgNPs (c-AgNPs, bPEI-AgNPs) inhibited IAPP aggregation at 500 mu g mL(-1), likely through electrostatic attraction and sequestering of IAPP monomers from fibrillation. In comparison, bare, brushed polyethylene glycol-and phosphorylcholine-grafted IONPs (bPEG-IONPs, bPC-IONPs) at 500 mu g mL(-1) elicited no major effect on IAPP fibril contour length, while bPC-IONPs induced significant fibril softening and looping likely mediated by dipolar interactions. While monovalent Ag+ up to 50 mu g mL(-1) showed no effect on the contour length or stiffness of IAPP fibrils, multivalent Fe3+ at 5 mu g mL(-1) halted IAPP fibrillation likely through ion-peptide crosslinking. Except bPEI-AgNPs, all three types of IONPs and c-AgNPs at 100 mu g mL(-1) alleviated IAPP toxicity in HEK293 cells indicating no clear correlation between protein aggregation and their induced cytotoxicity. This study demonstrates the complexity of protein aggregation intervened by NPs of different physicochemical properties and - together with existing literature - facilitates nanotechnological applications for mitigating amyloid-mediated pathologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available