4.7 Article

Tree Stem Diameter Estimation From Volumetric TLS Image Data

Journal

REMOTE SENSING
Volume 9, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/rs9060614

Keywords

diameter at breast height; DBH; Hough transform; forest inventory; 3D image; terrestrial laser scanning

Funding

  1. Swiss Federal Office for the Environment (FOEN)
  2. Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)

Ask authors/readers for more resources

Recently, a new method on tree stem isolation using volumetric image data from terrestrial laser scans (TLS) has been introduced by the same authors. The method transfers TLS data into a voxel grid data structure and isolates the tree stems from the overall forest vegetation. While the stem detection method yields on a three dimensional localisation of the tree stems, the present study introduces a supplemental technique, which accurately estimates the diameter at breast height (DBH) from the stem objects. Often, large pieces of the stems are occluded by other vegetation and are only partially represented in the laser scanning data, not covering the complete circumference. Therefore, it was not possible to measure the diameter at 130 cm height directly on the stem imagery. Instead, a method has been developed, which estimated the diameter from the fragmented stem information at the specific cross sections. The stem information was processed in a way, which allowed applying a Hough transform to the image for fitting circles to the cross sections. In contrast to other studies, Hough transform was applied to single stem images with information from other vegetation parts already being removed. Even in cases where only a single and very small fragment of a stem is available, the diameter could be estimated from the curvature. It also has been demonstrated that the image resolution for DBH measurement can be significantly higher than the resolution used for stem isolation in order to increase the precision. Verification of the computed DBH on nine spatially independent test sites showed that applying the Hough transform to single stem cross section images produced accurate results. When excluding the five strongest individual outliers a bias of -0.02 cm, a root mean square error (RMSE) of 2.9 cm and R-2 of 0.98 were achieved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available