4.7 Article

Histone demethylase LSD1 restricts influenza A virus infection by erasing IFITM3-K88 monomethylation

Journal

PLOS PATHOGENS
Volume 13, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.ppat.1006773

Keywords

-

Funding

  1. National Science Foundation for Distinguished Young Scholars [31525008]
  2. National Natural Science Foundation of China [81590766, 81330072, 81360250, 31500714, 31370863, 81772202, 31570171]
  3. Chinese National Program on Key Basic Research Project Grants [2014CB541803, 2014CB541903]
  4. National Key Research and Development Program of China [2016YFC1200403]
  5. Rising Star Talent Program from the Science and Technology Commission of Shanghai Municipality [15QA1404000]
  6. Youth Innovation Promotion Association CAS
  7. 100 Talent from CAS
  8. 1000 Talent from Science and Technology Commission of Shanghai Municipality
  9. [16XD1403800]

Ask authors/readers for more resources

The histone demethylase LSD1 has been known as a key transcriptional coactivator for DNA viruses such as herpes virus. Inhibition of LSD1 was found to block viral genome transcription and lytic replication of DNA viruses. However, RNA virus genomes do not rely on chromatin structure and histone association, and the role of demethylase activity of LSD1 in RNA virus infections is not anticipated. Here, we identify that, contrary to its role in enhancing DNA virus replication, LSD1 limits RNA virus replication by demethylating and activating IFITM3 which is a host restriction factor for many RNA viruses. We have found that LSD1 is recruited to demethylate IFITM3 at position K88 under IFNa treatment. However, infection by either Vesicular Stomatitis Virus (VSV) or Influenza A Virus (IAV) triggers methylation of IFITM3 by promoting its disassociation from LSD1. Accordingly, inhibition of the enzymatic activity of LSD1 by Trans-2-phenylcyclopropylamine hydrochloride (TCP) increases IFITM3 monomethylation which leads to more severe disease outcomes in IAV-infected mice. In summary, our findings highlight the opposite role of LSD1 in fighting RNA viruses comparing to DNA viruses infection. Our data suggest that the demethylation of IFITM3 by LSD1 is beneficial for the host to fight against RNA virus infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available