4.4 Article

Electric field effect of GaAs monolayer from first principles

Journal

AIP ADVANCES
Volume 7, Issue 3, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4979507

Keywords

-

Funding

  1. National Key Basic Research Program of China [2015CB921600]
  2. National Natural Science Foundation of China [11274222, 51672171]
  3. Eastern Scholar Program from the Shanghai Municipal Education Commission

Ask authors/readers for more resources

Using first-principle calculations, we investigate two-dimensional (2D) honeycomb monolayer structures composed of group III-V binary elements. It is found that such compound like GaAs should have a buckled structure which is more stable than graphene-like flat structure. This results a polar system with out-of-plane dipoles arising from the non-planar structure. Here, we optimized GaAs monolayer structure, then calculated the electronic band structure and the change of buckling height under external electric field within density functional theory using generalized gradient approximation method. We found that the band gap would change proportionally with the electric field magnitude. When the spin-orbit coupling (SOC) is considered, we revealed fine spin-splitting at different points in the reciprocal space. Furthermore, the valence and conduction bands spin-splitting energies due to SOC at the K point of buckled GaAs monolayers are found to be weakly dependent on the electric field strength. Finally electric field effects on the spin texture and second harmonic generation are discussed. The present work sheds light on the control of physical properties of GaAs monolayer by the applied electric field. (C) 2017 Author(s).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available