4.7 Article

pIL6-TRAIL-engineered umbilical cord mesenchymal/stromal stem cells are highly cytotoxic for myeloma cells both in vitro and in vivo

Journal

STEM CELL RESEARCH & THERAPY
Volume 8, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s13287-017-0655-6

Keywords

Multiple myeloma; Umbilical cord mesenchymal stromal/stem cells; TRAIL; Apoptosis

Funding

  1. Italian Association for Cancer Research [17536]
  2. Apulia Region ('Oncogenomic Project' and 'Jonico-Salentino Project')

Ask authors/readers for more resources

Background: Mesenchymal/stromal stem cells (MSCs) are favorably regarded in anti-cancer cytotherapies for their spontaneous chemotaxis toward inflammatory and tumor environments associated with an intrinsic cytotoxicity against tumor cells. Placenta-derived or TRAIL-engineered adipose MSCs have been shown to exert anti-tumor activity in both in-vitro and in-vivo models of multiple myeloma (MM) while TRAIL-transduced umbilical cord (UC)-MSCs appear efficient inducers of apoptosis in a few solid tumors. However, apoptosis is not selective for cancer cells since specific TRAIL receptors are also expressed by a number of normal cells. To overcome this drawback, we propose to transduce UC-MSCs with a bicistronic vector including the TRAIL sequence under the control of IL-6 promoter (pIL6) whose transcriptional activation is promoted by the MM milieu. Methods: UC-MSCs were transduced with a bicistronic retroviral vector (pMIGR1) encoding for green fluorescent protein (GFP) and modified to include the pIL6 sequence upstream of the full-length human TRAIL cDNA. TRAIL expression after stimulation with U-266 cell conditioned medium, or IL-1 alpha/IL-1 beta, was evaluated by flow cytometry, confocal microscopy, real-time PCR, western blot analysis, and ELISA. Apoptosis in MM cells was assayed by Annexin V staining and by caspase-8 activation. The cytotoxic effect of pIL6-TRAIL+-GFP+-UC-MSCs on MM growth was evaluated in SCID mice by bioluminescence and ex vivo by caspase-3 activation and X-ray imaging. Statistical analyses were performed by Student's t test, ANOVA, and logrank test for survival curves. Results: pIL6-TRAIL+-GFP+-UC-MSCs significantly expressed TRAIL after stimulation by either conditioned medium or by IL-1 alpha/IL-1 beta, and induced apoptosis in U-266 cells. Moreover, when systemically injected in SCID mice intratibially xenografted with U-266, those cells underwent within MM tibia lesions and significantly reduced the tumor burden by specific induction of apoptosis in MM cells as revealed by caspase-3 activation. Conclusions: Our tumor microenvironment-sensitive model of anti-MM cytotherapy is regulated by the axis pIL6/IL-1 alpha/IL-1 beta and appears suitable for further preclinical investigation not only in myeloma bone disease in which UC-MSCs would even participate to bone healing as described, but also in other osteotropic tumors whose milieu is enriched of cytokines triggering the pIL6.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available