4.3 Article

Diversity index as a novel prognostic factor in breast cancer

Journal

ONCOTARGET
Volume 8, Issue 57, Pages 97114-97126

Publisher

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.21371

Keywords

heterogeneity; Shannon index; c-MYC; FGFRI; copy number variation

Funding

  1. National Research Foundation of Korea (NRF)'s Basic Science Research Program [NRF-2015R1A2A2A01007907]

Ask authors/readers for more resources

Intratumoral genetic heterogeneity leads to tumor progression and therapeutic resistance. However, due to the difficulty associated with its assessment, the use of this heterogeneity as a prognostic or predictive marker remains limited. To investigate the significance of the Shannon diversity index of gene copy number variation as a tool for measuring genetic heterogeneity in breast cancer, we performed fluorescence in situ hybridization of c-MYC in two sets of invasive breast cancer samples and correlated the Shannon index of c-MYC copy number variation with clinicopathologic features and patient survival. The Shannon index was correlated with average c-MYC copy number and was higher in tumors in which c-MYC was amplified and in those with c-MYC genetic or regional heterogeneity. A high Shannon index was associated with adverse pathologic features including high histologic grade, lymphovascular invasion, p53 overexpression, high Ki-67 proliferation index and negative hormone receptor status. It was also associated with poor disease-free survival in the whole group, in a subgroup excluding c-MYC-amplified cases, and in the hormone receptor-positive subgroup of both a test and a validation set. A high Shannon index for FGFR1 gene copy number variation was also an independent adverse prognostic factor. Our findings suggest that the Shannon diversity index is a measure of intratumoral heterogeneity and can be used as a prognostic factor in breast cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available