4.7 Article

Barley beta-glucans varying in molecular mass and oligomer structure affect cecal fermentation and microbial composition but not blood lipid profiles in hypercholesterolemic rats

Journal

FOOD & FUNCTION
Volume 8, Issue 12, Pages 4723-4732

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7fo01314k

Keywords

-

Funding

  1. Innovation Fond Denmark

Ask authors/readers for more resources

There is an unmet need for appealing and functional barley beta-glucan (BG) food matrices that can provide sufficient and active BG doses to consumers. We investigated how molecular mass and oligomer structure important for BG food and health properties affected plasma lipids and gut parameters in hypercholesterolemic rats. Following 3 weeks on a high-cholestrol diet, rats were given a high-cholesterol diet supplemented with either cellulose (control) or purified barley BGs with low (100 or 150 kDa; glucagel or lowBG, respectively) or medium (530 kDa; mediumBG) molecular masses varying in cellotriosyl/cellotetraosyl oligomer ratio for 4 weeks. All four diets (control, glucagel, lowBG or mediumBG) reduced plasma triacylglycerol and cholesterols from week 3 to 7. The BG diets increased cecal production of short-chain fatty acids (SCFAs) compared to the control diet. The glucagel and lowBG diets stimulated the number of Bifidobacterium in the cecum, whereas the mediumBG diet reduced numbers of both Bacteroides/ Prevotella and Lactobacillus in the cecum compared to the control diet. In conclusion, barley BGs at 6.5-7.5% of the diet independent of molecular mass and oligomer block structure showed no additional effect compared to the control treatment on blood cholesterol and triacylglycerol levels in this hypercholesterolemic rat model. Furthermore, the cecal fermentation pattern and microbial composition did not seem to affect plasma lipid composition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available