4.6 Article

Preparation and properties of novel flame-retardant PBS wood-plastic composites

Journal

ARABIAN JOURNAL OF CHEMISTRY
Volume 11, Issue 6, Pages 844-857

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.arabjc.2017.12.023

Keywords

Poly (butylene succinate); Crystallization behavior; Flame retardant; AHP; APP; CaHP

Funding

  1. Planned Science and Technology Project of Hunan Province, China [2016SK2089, 2016RS2011]
  2. Major Scientific and Technological Achievements Transformation Projects of Strategic Emerging Industries in Hunan Province [2016GK4045]
  3. Academician reserve personnel training plan of lift engineering technical personnel of Hunan Science and Technology Association [2017TJ-Y10]

Ask authors/readers for more resources

Poly (butylene succinate) (PBS), as a fully biodegradable thermoplastic, have developed rapidly due to its integrated performance and processibility. The CaCO3 as a reinforcing component, and AHP, APP and CaHP as a flame-retardant component were separately incorporated into PBS matrix. A series of PBS-based composites were fabricated via melting blending using internal mixer followed by injection molding. The results show that the different filling ratio has a certain influence on the mechanical properties of the composites. When the filling amount of wood powder is 40 copies, the composite mechanical properties of the composite is better. CaCO3 addition, the composite material of the bending strength, tensile strength have improved significantly. The results showed that small amount of AHP, APP and CaHP improved the tensile strength of PBS composites, however, the tensile strength decreased as further increase amount of AHP, APP and CaHP. Cone Calorimeter testing revealed that, the combination of AHP, APP and CaHP could significantly reduce the pHRR and the total heart release (THR) of the composites. TGA test indicated that the addition of AHP, APP and CaHP could significantly increase the char residue and reduce the mass loss rate. TGA test indicated that the addition of AHP, APP and CaHP could significantly increase the char residue and reduce the mass loss rate. Through the research of mechanical and thermal properties of PBS composite, it could lay a foundation of the application of PBS composite in different fields. (C) 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available