4.4 Article

Overexpressed eNOS upregulates SIRT1 expression and protects mouse pancreatic β cells from apoptosis

Journal

EXPERIMENTAL AND THERAPEUTIC MEDICINE
Volume 14, Issue 2, Pages 1727-1731

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/etm.2017.4669

Keywords

diabetes; sirtuin 1; endothelial nitric oxide synthase; protein-protein interaction; protective effect

Funding

  1. Science and Technology Research Projects of Guangxi Universities [YB2014266]
  2. National Natural Science Foundation of China [81460164, 31060161]

Ask authors/readers for more resources

Loss of sirtuin 1 (SIRT1) activity may be associated with metabolic diseases, including diabetes. The aim of the present study was to investigate the potential effects of overexpressed endothelial nitric oxide synthase (eNOS) on cell proliferation and apoptosis with SIRT1 activation in the Min6 mouse pancreatic beta cell line. A pcDNA3.0-eNOS plasmid was constructed and transfected into Min6 cells for 24 h prior to harvesting. eNOS expression was validated and SIRT1 expression was detected following plasmid transfection using reverse transcription-quantitative polymerase chain reaction and western blot analysis, which demonstrated that the expression levels of eNOS and SIRT1 were significantly upregulated. Furthermore, the cell proliferation and cell apoptosis of the Min6 cells were evaluated, using a cell counting kit-8 assay and flow cytometry, respectively. The results suggested that overexpressed eNOS promoted cell proliferation and inhibited cell apoptosis in Min6 cells. The interaction between eNOS and SIRT1 was explored through co-immunoprecipitation, and it found that there was a strong interaction between eNOS and SIRT1. In conclusion, overexpressed eNOS may induce SIRT1 activation, which is implied to play a protective role in Min6 cells, and eNOS may be a new therapeutic target for diseases such as type 2 diabetes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available