4.7 Article

Modeling competing hydraulic fracture propagation with the extended finite element method

Journal

ACTA GEOTECHNICA
Volume 13, Issue 2, Pages 243-265

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11440-017-0569-6

Keywords

Bulk plasticity; Cohesive fracture model; Competing hydraulic fractures; Extended finite element method; Perforation pressure loss; Wellbore coupling

Ask authors/readers for more resources

We present an extended finite element framework to numerically study competing hydraulic fracture propagation. The framework is capable of modeling fully coupled hydraulic fracturing processes including fracture propagation, elastoplastic bulk deformation and fluid flow inside both fractures and the wellbore. In particular, the framework incorporates the classical orifice equation to capture fluid pressure loss across perforation clusters linking the wellbore with fractures. Dynamic fluid partitioning among fractures during propagation is solved together with other coupled factors, such as wellbore pressure loss (), perforation pressure loss (), interaction stress () and fracture propagation. By numerical examples, we study the effects of perforation pressure loss and wellbore pressure loss on competing fracture propagation under plane-strain conditions. Two dimensionless parameters and are used to describe the transition from uniform fracture propagation to preferential fracture propagation. The numerical examples demonstrate the dimensionless parameter also works in the elastoplastic media.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available