4.7 Article

Experimental performance assessment of the sub-band minimum variance beamformer for ultrasound imaging

Journal

ULTRASONICS
Volume 79, Issue -, Pages 87-95

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultras.2017.04.011

Keywords

Minimum variance beamformer; Sub-band processing; Experimental performance; Micrometre lateral resolution

Funding

  1. Science and Technology Facilities Council [STFC-ST/M007804/1]
  2. Danish Advanced Technology Foundation [82-2012-4]
  3. B-K Ultrasound ApS
  4. Science and Technology Facilities Council [ST/M007804/1] Funding Source: researchfish
  5. STFC [ST/M007804/1] Funding Source: UKRI

Ask authors/readers for more resources

Recent progress in adaptive beamforming techniques for medical ultrasound has shown that current resolution limits can be surpassed. One method of obtaining improved lateral resolution is the Minimum Variance (MV) beamformer. The frequency domain implementation of this method effectively divides the broadband ultrasound signals into sub-bands (MVS) to conform with the narrow-band assumption of the original MV theory. This approach is investigated here using experimental Synthetic Aperture (SA) data from wire and cyst phantoms. A 7 MHz linear array transducer is used with the SARUS experimental ultrasound scanner for the data acquisition. The lateral resolution and the contrast obtained, are evaluated and compared with those from the conventional Delay-and-Sum (DAS) beamformer and the MV temporal implementation (MVT). From the wire phantom the Full-Width-at-Half-Maximum (FWHM) measured at a depth of 52 mm, is 16.7 mu m (0.082) for both MV methods, while the corresponding values for the DAS case are at least 24 times higher. The measured Peak-Side-lobe-Level (PSL) may reach -41 dB using the MVS approach, while the values from the DAS and MVT beamforming are above -24 dB and -33 dB, respectively. From the cyst phantom, the power ratio (PR), the contrast-to-noise ratio (CNR), and the speckle signal-to-noise ratio (sSNR) measured at a depth of 30 mm are at best similar for MVS and DAS, with values ranging between -29 dB and -30 dB, 1.94 and 2.05, and 2.16 and 2.27 respectively. In conclusion the MVS beamformer is not suitable for imaging continuous targets, and significant resolution gains were obtained only for isolated targets. (C) 2017 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available