4.4 Article

Strain-controlled spin and charge pumping in graphene devices via spin-orbit coupled barriers

Journal

EPL
Volume 111, Issue 6, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1209/0295-5075/111/67005

Keywords

-

Ask authors/readers for more resources

We theoretically propose a graphene-based adiabatic quantum pump with intrinsic spin-orbit coupling (SOC) subject to strain where two time-dependent extrinsic spin-orbit coupled barriers drive spin and charge currents. We study three differing operation modes where i) location, ii) chemical potential, and iii) SOC of the two barriers oscillate periodically and out of phase around their equilibrium states. Our results demonstrate that the amplitude of adiabatically pumped currents highly depends on the considered operation mode. We find that such a device operates with highest efficiency and in a broader range of parameters where the barriers' chemical potential drives the quantum pump. Our results also reveal that by introducing strain to the system, one can suppress or enhance the charge and spin currents separately, depending on the strain direction. Copyright (C) EPLA, 2015

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available