4.5 Article

Epidermal Growth Factor Induces Proliferation of Hair Follicle-Derived Mesenchymal Stem Cells Through Epidermal Growth Factor Receptor-Mediated Activation of ERK and AKT Signaling Pathways Associated with Upregulation of Cyclin D1 and Downregulation of p16

Journal

STEM CELLS AND DEVELOPMENT
Volume 26, Issue 2, Pages 113-122

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/scd.2016.0234

Keywords

cell cycle; EGFR; hair follicle; mesenchymal stem cells; proliferation

Funding

  1. National Natural Science Foundation of China [81573067]
  2. Frontier Interdiscipline Program of Norman Bethune Health Science Center of Jilin University [2013101007]
  3. Specialized Research Fund for the Doctoral Program of Higher Education [20130061110077]

Ask authors/readers for more resources

The maintenance of highly proliferative capacity and full differentiation potential is a necessary step in the initiation of stem cell-based regenerative medicine. Our recent study showed that epidermal growth factor (EGF) significantly enhanced hair follicle-derived mesenchymal stem cell (HF-MSC) proliferation while maintaining the multilineage differentiation potentials. However, the underlying mechanism remains unclear. Herein, we investigated the role of EGF in HF-MSC proliferation. HF-MSCs were isolated and cultured with or without EGF. Immunofluorescence staining, flow cytometry, cytochemistry, and western blotting were used to assess proliferation, cell signaling pathways related to the EGF receptor (EGFR), and cell cycle progression. HF-MSCs exhibited surface markers of mesenchymal stem cells and displayed trilineage differentiation potentials toward adipocytes, chondrocytes, and osteoblasts. EGF significantly increased HF-MSC proliferation as well as EGFR, ERK1/2, and AKT phosphorylation (p-EGFR, p-ERK1/2, and p-AKT) in a time-and dosedependent manner, but not STAT3 phosphorylation. EGFR inhibitor (AG1478), PI3K-AKT inhibitor (LY294002), ERK inhibitor (U0126), and STAT3 inhibitor (STA-21) significantly blocked EGF-induced HF-MSC proliferation. Moreover, AG1478, LY294002, and U0126 significantly decreased p-EGFR, p-AKT, and p-ERK1/2 expression. EGF shifted HF-MSCs at the G1 phase to the S and G2 phase. Concomitantly, cyclinD1, phosphorylated Rb, and E2F1expression increased, while that of p16 decreased. In conclusion, EGF induces HF-MSC proliferation through the EGFR/ERK and AKT pathways, but not through STAT-3. The G1/S transition was stimulated by upregulation of cyclinD1 and inhibition of p16 expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available