4.6 Article

Arrested and temporarily arrested states in a protein-polymer mixture studied by USAXS and VSANS

Journal

SOFT MATTER
Volume 13, Issue 46, Pages 8756-8765

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7sm01434a

Keywords

-

Funding

  1. JCNS
  2. ESRF
  3. DFG

Ask authors/readers for more resources

We investigate the transition of the phase separation kinetics from a complete to an arrested liquid-liquid phase separation (LLPS) in mixtures of bovine gamma-globulin with polyethylene glycol (PEG). The solutions feature LLPS with upper critical solution temperature phase behavior. At higher PEG concentrations or low temperatures, non-equilibrium, gel-like states are found. The kinetics is followed during off-critical quenches by ultra-small angle X-ray scattering (USAXS) and very-small angle neutron scattering (VSANS). For shallow quenches a kinetics consistent with classical spinodal decomposition is found, with the characteristic length (xi) growing with time as xi similar to t(1/3). For deep quenches, xi grows only very slowly with a growth exponent smaller than 0.05 during the observation time, indicating an arrested phase separation. For intermediate quench depths, a novel growth kinetics featuring a three-stage coarsening is observed, with an initial classical coarsening, a subsequent slowdown of the growth, and a later resumption of coarsening approaching again xi similar to t(1/3). Samples featuring the three-stage coarsening undergo a temporarily arrested state. We hypothesize that, while intermittent coarsening and collapse might contribute to the temporary nature of the arrested state, migration-coalescence of the minority liquid phase through the majority glassy phase may be the main mechanism underlying this kinetics, which is also consistent with earlier simulation results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available