4.7 Article

Substrate-gate coupling in ZnO-FET biosensor for cardiac troponin I detection

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 242, Issue -, Pages 1142-1154

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2016.09.131

Keywords

Biosensor; Electrical-based; Field-effect transistor; Zinc oxide nanoparticles; Substrate-gate coupling; Cardiac troponin I

Funding

  1. Department of Higher Education, Ministry of Higher Education (KPT), through Fundamental Research Grant Scheme (FRGS) [9003-00536]

Ask authors/readers for more resources

Currently, field-effect transistor (FET)-based biosensors have been implemented in several portable sensors with the ultimate application in point-of-care testing (POCT). In this paper, we have designed substrate-gate coupling in FET-based biosensor for the detection of cardiac troponin I (cTnI) biomarker. In the device structure, zinc oxide nanoparticles (ZnO-NPs) thin film were deposited through solgel and spin coating techniques on the channel. The p-type silicon was used as a substrate, while ZnO is an n-type nanomaterial, thus creates p-n-p junction between source, channel, and drain. The deposited thin films exhibited hexagonal wurtzite phase of ZnO, suitable for biomolecular interaction as revealed in X-ray diffraction (XRD) analysis. The surface of the thin film was then functionalized with 3-aminopropyltriethoxysilane (APTES), followed by glutaraldehyde (GA) as a bi-functional linker to immobilize the cTnI monoclonal antibody (MAb-cTnI) as bio-receptor for capturing cTnI biomarker and proven by the Fourier transform-infrared (FT-IR) spectra. Lastly, we demonstrated a new strategy, the integration of FET-based biosensors with substrate-gate showed differences between before (immobilization) and after cTnI target biomarker interaction by significant changes in drain current (la) and change of threshold voltage (VT), which improved the sensitive detection, with the limit of detection down to 3.24 pg/ml. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Chemistry, Analytical

Volatile Organic Compounds as Potential Biomarkers for Noninvasive Disease Detection by Nanosensors: A Comprehensive Review

Palaniyandi Velusamy, Chia-Hung Su, Palaniappan Ramasamy, Viswanathan Arun, Narayanan Rajnish, Pachaiappan Raman, Vaseeharan Baskaralingam, Sakkarapalayam Murugesan Senthil Kumar, Subash C. B. Gopinath

Summary: Biomarkers are biological molecules associated with physiological changes of the body, aiding in the detection and prediction of disease onset. Breath analysis, as a noninvasive, rapid, and inexpensive method, has become a research focus in early detection of health issues.

CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY (2023)

Article Biochemistry & Molecular Biology

Immuno-probed multiwalled carbon nanotube surface for abdominal aortic aneurysm biomarker analysis

Xuekai Zhao, Subash C. B. Gopinath, Weichao Zhao

Summary: An immunosensor based on a multiwalled carbon nanotube-modified surface was developed in this study to quantify the CRP level in blood. By constructing specific anti-CRP on the multiwalled carbon nanotube surface, the sensor exhibited a dose-dependent linear pattern in the range of 200 to 3000 pM and was able to identify CRP in biological samples.

BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY (2023)

Article Biochemistry & Molecular Biology

Cardiovascular biomarker troponin I biosensor: Aptamer-gold-antibody hybrid on a metal oxide surface

Hu Hui, Subash C. B. Gopinath, Zool H. Ismail, Yeng Chen, K. Pandian, Palaniyandi Velusamy

Summary: Myocardial infarction (MI) is a life-threatening condition that can cause cardiac arrest and organ damage. Current diagnostic techniques are not sensitive enough for early detection, but blood biomarker-based diagnosis, specifically the measurement of cardiac troponin I (cTnI), provides a potential solution. In this study, a sensor based on interdigitated electrodes was developed and used to detect cTnI. The use of aptamer-conjugated gold nanoparticles and detection antibodies in a sandwich pattern significantly improved the sensitivity of the detection. The developed sensor showed promising results for diagnosing MI.

BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY (2023)

Article Green & Sustainable Science & Technology

Controlling Arsenic Accumulation in Rice Grain under Nanomaterials-Assisted Optimal Greenhouse Set-Up

Muhammad Nur Aiman Uda, Subash C. B. Gopinath, Uda Hashim, Muhammad Nur Afnan Uda, Tijjani Adam, Nor Azizah Parmin, Sreeramanan Subramaniam, Suresh V. Chinni, Veeranjaneya Reddy Lebaka, Ramachawolran Gobinath

Summary: Rice is increasingly exposed to inorganic arsenic, affecting half of the world population as rice consumers. This study investigated the effects of silica and graphene nanomaterials treatment on varied arsenic levels, and found that silica nanoparticles showed the highest inhibition on arsenic accumulation. Arsenic adversely affected plant growth and even caused death at high concentrations, but silica nanoparticles demonstrated potential in reducing consumer health risks.

SUSTAINABILITY (2023)

Review Biotechnology & Applied Microbiology

Nanomaterials in food industry for the protection from mycotoxins: an update

Theivasanthi Thirugnanasambandan, Subash C. B. Gopinath

Summary: The storage of food grains against fungal infection is a major challenge for farmers, but nanotechnology offers a solution by replacing synthetic fungicides with inorganic nanoparticles such as silver and zinc oxide, as well as green synthesized nanoparticles. Plant extracts and essential oils show effective antifungal properties, and nanoparticles can be impregnated in packaging materials for safe food storage. This overview discusses the nanomaterials-mediated protection of food materials from mycotoxin contamination and its impact on the environment.

3 BIOTECH (2023)

Article Health Care Sciences & Services

SLC1A2 Gene Polymorphism Influences Methamphetamine-Induced Psychosis

Dayang Nooreffazleen Yahya, Rhanye Mac Guad, Yuan-Seng Wu, Siew Hua Gan, Subash C. B. Gopinath, Hasif Adli Zakariah, Rusdi Abdul Rashid, Maw Shin Sim

Summary: The rs4755404 gene polymorphism of SLC1A2 is significantly associated with METH-induced psychosis, especially for individuals with the GG homozygous genotype.

JOURNAL OF PERSONALIZED MEDICINE (2023)

Review Green & Sustainable Science & Technology

Bio-Enzyme Hybrid with Nanomaterials: A Potential Cargo as Sustainable Biocatalyst

Wan Yuen Tan, Subash C. B. Gopinath, Periasamy Anbu, Ahmad Radi Wan Yaakub, Sreeramanan Subramaniam, Yeng Chen, Sreenivasan Sasidharan

Summary: With the development of bionanotechnology, the field of nanobiocatalysts has grown rapidly and transformed various nanomaterials into novel nanocarriers for enzyme immobilization. Nanotubes, nanofibers, nanopores, nanoparticles, and nanocomposites have been successfully used as nanocarriers. The combination of enzymes and nanocarriers through different immobilization techniques has attracted attention due to their exceptional catalytic performance, stability, and reusability. The review discusses enzyme immobilization on nanocarriers and highlights the techniques, properties, preparations, and applications of nanoimmobilized enzymes.

SUSTAINABILITY (2023)

Review Biotechnology & Applied Microbiology

An update on pathogenesis and clinical scenario for Parkinson's disease: diagnosis and treatment

Hussaini Adam, Subash C. B. Gopinath, M. K. Md Arshad, Tijjani Adam, N. A. Parmin, Irzaman Husein, Uda Hashim

Summary: In severe cases, Parkinson's disease causes uncontrolled movements known as motor symptoms such as dystonia, rigidity, bradykinesia, and tremors. Parkinson's disease also causes non-motor symptoms such as insomnia, constipation, depression and hysteria. Disruption of neural networks in the substantia nigra pars compacta is a major cause of motor symptoms in Parkinson's disease, highlighting the need for better methods of detection. Improved diagnosis and treatment of Parkinson's disease can help avoid some of its devastating symptoms.

3 BIOTECH (2023)

Review Microbiology

Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery

Suaidah Ramli, Yuan Seng Wu, Kalaivani Batumalaie, Rhanye Mac Guad, Ker Woon Choy, Ashok Kumar, Subash C. B. Gopinath, Md. Moklesur Rahman Sarker, Vetriselvan Subramaniyan, Mahendran Sekar, Neeraj Kumar Fuloria, Shivkanya Fuloria, Suresh V. Chinni, Gobinath Ramachawolran

Summary: This review focuses on the therapeutic efficacy and molecular mechanisms of Withania somnifera (WS) extracts and their phytochemicals against SARS-CoV-2 infection. It also discusses the use of molecular docking in developing potential inhibitors from WS to target the virus and host cell receptors. Additionally, the review explores the use of nanoformulations or nanocarriers in enhancing WS delivery for improved bioavailability and treatment efficacy.

MICROORGANISMS (2023)

Article Infectious Diseases

Synergistic Antimicrobial Activity of Ceftriaxone and Polyalthia longifolia Methanol (MEPL) Leaf Extract against Methicillin-Resistant Staphylococcus aureus and Modulation of mecA Gene Presence

Valiappan Ranjutha, Yeng Chen, Lamya Ahmed Al-Keridis, Mitesh Patel, Nawaf Alshammari, Mohd Adnan, Sumaira Sahreen, Subash C. B. Gopinath, Sreenivasan Sasidharan

Summary: Polyalthia longifolia is a medicinal plant used in traditional medicine for skin diseases. This study confirms the synergistic antimicrobial activity of Polyalthia longifolia methanol leaf extract (MEPL) and ceftriaxone against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. The combination of MEPL and ceftriaxone significantly reduces the minimum inhibitory concentration of ceftriaxone and inhibits the expression of the resistant mecA gene in MRSA.

ANTIBIOTICS-BASEL (2023)

Review Multidisciplinary Sciences

Recent advances in density functional theory approach for optoelectronics properties of graphene

A. L. Olatomiwa, Tijjani Adam, C. O. Edet, A. A. Adewale, Abdullah Chik, Mohammed Mohammed, Subash C. B. Gopinath, U. Hashim

Summary: This review provides a comprehensive overview of articles on the electronic and optical properties of graphene using density functional theory and machine learning approaches. It summarizes the thermodynamic stability parameters of various doped graphene systems and discusses the strengths and uncertainties of the used models and potentials. Future studies should explore the thermal properties, heterostructure modeling, superconducting behavior, and optimization of DFT models to enhance the potential of graphene.

HELIYON (2023)

Article Green & Sustainable Science & Technology

Bioaccumulation and Translocation of Heavy Metals in Paddy (Oryza sativa L.) and Soil in Different Land Use Practices

Roslaili Abdul Aziz, Mok Yiwen, Mawaddah Saleh, Mohd Nazry Salleh, Subash C. B. Gopinath, Sunny Goh Eng Giap, Suresh V. Chinni, Ramachawolran Gobinath

Summary: This study evaluated the accumulation of trace elements, such as copper, zinc, and lead, in paddy fields and soil, and analyzed their transfer to rice plants. The findings show that the accumulation of heavy metals in soil varies depending on the location and the order of accumulation differs for different metals. The study also found that soil properties and metal abundance can influence the growth characteristics of rice plants.

SUSTAINABILITY (2023)

Article Food Science & Technology

Fabrication of active food packaging based on PLA/Chitosan/CNC-containing Coleus aromaticus essential oil: application to Harumanis mango

Raja Hasnida Raja Hashim, Ahmad Anas Nagoor Gunny, Sam Sung Ting, Subash C. B. Gopinath, Yeong Yin Fong, Sunil Pareek, Muaz Mohd Zaini Makhtar, Hafiza Shukor

Summary: This study investigated the effect of Coleus aromaticus essential oil (CAEO) on an active film made of polylactic acid, chitosan, and cellulose nanocrystal for fruit packaging. The addition of CAEO improved the mechanical properties and antioxidant activity of the film, and exhibited inhibitory effects against pathogenic fungus. The results suggest that the PLA/Cs/CNC/CAEO films can enhance microbial safety and prolong the shelf life of fruits, potentially replacing petroleum-based plastics for fruit packaging applications.

JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION (2023)

Article Multidisciplinary Sciences

Effect of zinc oxide surface treatment concentration and nanofiller loading on the flexural properties of unsaturated polyester/ kenaf nanocomposites

Mohammed Mohammed, Jawad K. Oleiwi, Anwar Ja 'afar Mohamad Jawad, Aeshah M. Mohammed, Azlin F. Osman, Rozyanty Rahman, Tijjani Adam, Bashir O. Betar, Subash C. B. Gopinath, Omar S. Dahham

Summary: This study aimed to enhance the flexural properties of unsaturated polyester/kenaf fiber nanocomposites by using zinc oxide nanoparticles for surface treatment. The findings showed that the addition of ZnONPs significantly improved the performance of the composites, with 2% being the optimal loading, and surface treatment with ZnONPs resulted in kenaf fibers with improved flexural properties.

HELIYON (2023)

Article Engineering, Biomedical

Sodium alginate/Hydroxyapatite/nanocellulose composites: Synthesis and Potentials for bone tissue engineering

S. Iswarya, T. Theivasanthi, Subash C. B. Gopinath

Summary: Sodium alginate/hydroxyapatite/nanocellulose (SA/HA/NC) nanocomposite films were prepared for bone tissue engineering using a simple solution casting method. The structure and properties of the composite films were studied by XRD, SEM, EDAX, and FTIR analysis. The results showed that the inclusion of different concentrations of NC improved the tensile strength of the biopolymer film. These bionanocomposite films have the potential to be used as biomaterials in bone tissue engineering.

JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS (2023)

Article Chemistry, Analytical

MEMS sensor based on MOF-derived WO3-C/In2O3 heterostructures for hydrogen detection

Mengmeng Guo, Na Luo, Yueling Bai, Zhenggang Xue, Qingmin Hu, Jiaqiang Xu

Summary: A porous heterostructure WO3-C/In2O3 was designed and prepared for a miniature H2 sensor, which showed higher response value, lower operating temperature, fast response-recovery speed, and low limit of detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Signal amplification strategy by chitosan-catechol hydrogel modified paper electrode for electrochemical detection of trace arsenite

Feng Hu, Hui Hu, Yuting Li, Xiaohui Wang, Xiaowen Shi

Summary: Arsenic contamination in water bodies is a significant health risk. This study developed a chitosan-catechol modified electrode for rapid and accurate detection of trace amounts of arsenic. The modified electrode demonstrated good detection capability and resistance to ionic interference, making it suitable for in situ detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

A buffering fluorogenic probe for real-time lysosomal pH monitoring

Yantao Zhang, Qian Liu, Tao Tian, Chunhua Xu, Pengli Yang, Lianju Ma, Yi Hou, Hui Zhou, Yongjun Gan

Summary: In this study, a lysosome-targeting buffering fluorogenic probe (Lyso-BFP) was designed and synthesized, demonstrating excellent photostability, pH specificity, and responsiveness to lysosomal acidification in living cells. The performance of Lyso-BFP in pH sensing was attributed to the inhibition of the photo-induced electron transfer process. Lyso-BFP allowed for wash-free imaging and long-term real-time monitoring of lysosome pH changes based on its off-on fluorescence behavior and buffer strategy.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Rational design of α-glucosidase activated near-infrared fluorescent probe and its applications in diagnosis and treatment of diabetes

Wei Cai, Wenbo Sun, Jiayue Wang, Xiaokui Huo, Xudong Cao, Xiangge Tian, Xiaochi Ma, Lei Feng

Summary: In this study, a near-infrared fluorescent probe HCBG was developed for imaging of alpha-GLC. HCBG exhibited excellent selectivity and sensitivity towards alpha-GLC in complex bio-samples, and showed good cell permeability for in situ real-time imaging. Through the high-throughput screening system established by HCBG, a natural alpha-GLC inhibitor was successfully isolated and identified. This study provides a novel fluorescence visualization tool for discovering and exploring the biological functions of diabetes-related gut microbiota, and a high-throughput screening approach for alpha-GLC inhibitor.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Electrochemical immunosensor for the quantification of galectin-3 in saliva

Trey W. Pittman, Xi Zhang, Chamindie Punyadeera, Charles S. Henry

Summary: Heart failure is a growing epidemic and a significant clinical and public health problem. Researchers have developed a portable and affordable diagnostic device for heart failure that can be used at the point-of-care, providing a valid alternative to current diagnostics approaches.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Optical hydrogen peroxide sensor for measurements in flow

Anders O. Tjell, Barbara Jud, Roland Schaller-Ammann, Torsten Mayr

Summary: An optical hydrogen peroxide sensor based on catalytic degradation and the detection of produced oxygen is presented. The sensor offers higher resolution and better sensitivity at lower H2O2 concentrations. By removing O2 from the sample solution, a more sensitive O2 sensor can be used for measurement. The sensor has been successfully applied in a flow-through cell to measure H2O2 concentration in different flow rates.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Engineered vertically-aligned carbon nanotube microarray for self-concentrated SERS detection

Seong Jae Kim, Ji-hun Jeong, Gaabhin Ryu, Yoon Sick Eom, Sanha Kim

Summary: Surface-enhanced Raman spectroscopy (SERS) is a high-sensitivity, label-free detection method with various analytical applications. Researchers have developed a hydrophobic SERS substrate based on engineered carbon nanotube arrays (CNT-SERS) and studied the role of structural design at both micro and nanoscales. The substrate demonstrated controlled self-enrichment capability and enhanced sensitivity, with a significant increase in the SERS signal. The study also proposed a theoretical model and a concentration strategy inspired by plants for analyte deposition on microarrays.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Flexible enzyme-like platform based on a 1-D CeVO4/2-D rGO-MCC heterostructure as sensor for the detection of intracellular superoxide anions

Dan Zhao, Renjun Jiang, Xiaoqiang Liu, Subbiah Alwarappan

Summary: In this study, a novel ternary composite material was constructed by assembling cerium vanadate nanorods on reduced graphene oxide-microcrystalline cellulose nanosheets, and it was used for real-time monitoring of the concentration of superoxide anions in vivo. The ternary composite showed excellent conductivity, large surface area, and abundant active sites, leading to a wider linear range, high sensitivity, low detection limit, and fast response time for superoxide anion detection.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Covalent organic framework enhanced aggregation-induced emission of berberine and the application for detection

Tengfei Wang, Liwen Wang, Guang Wu, Dating Tian

Summary: In this study, a covalent organic framework material TaTp-COF with porous and uniform spheres was successfully prepared via hydrothermal reaction, and it was found to significantly enhance the aggregation-induced emission (AIE) of berberine. The unique emission properties of berberine on TaTp-COF were studied and utilized for the sensitive detection of berberine.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Visualized time-temperature monitoring by triplet-sensitized ratiometric fluorescent nanosensors

Lin Li, Yilei Ding, Lei Xu, Shuoran Chen, Guoliang Dai, Pengju Han, Lixin Lu, Changqing Ye, Yanlin Song

Summary: In this study, a novel TTI based on a ratiometric fluorescent nanosensor is designed, which has the advantages of high accuracy and low cost. Experimental and theoretical investigations confirm its pH responsiveness and demonstrate its good sensitivity and reliability. By monitoring the total volatile basic nitrogen, this TTI can accurately predict food spoilage and can be adaptively modified for different types of food. The TTI based on this nanosensor enables visual monitoring of food quality.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

A fluorescent prodrug to fight drug-resistant lung cancer cells via autophagy-driven ferroptosis

Fangju Chen, Xueting Wang, Wei Chen, Chenwen Shao, Yong Qian

Summary: Lung cancer is the second most common malignant tumor worldwide. Drug resistance in lung cancer leads to treatment failure and recurrence in majority of patients. This study developed a fluorescent prodrug that can be activated in cancer cells to release drugs, and its signal can be tracked by imaging. It shows a unique autophagy-driven ferroptosis effect, indicating its potential for targeting drug-resistant cancer cells.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

ZnO quantum dots sensitized ZnSnO3 for highly formaldehyde sensing at a low temperature

Weichao Li, Qiming Yuan, Zhangcheng Xia, Xiaoxue Ma, Lifang He, Ling Jin, Xiangfeng Chu, Kui Zhang

Summary: This study developed a high-performance gas sensor for formaldehyde detection by modifying ZnSnO3 with ZnO QDs and SnO2 QDs. The modified sensor showed improved sensing response and lower working temperature. The presence of ZnO QDs formed rich heterojunctions, increased surface area, and provided oxygen deficiency for formaldehyde sensing reaction, thus enhancing the sensor performance. This research provides an alternative method to enhance the sensing properties of MOS by QDs modification.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Development of highly sensitive plasmonic biosensors encoded with gold nanoparticles on M13 bacteriophage networks

Joung-Il Moon, Eun Jung Choi, Younju Joung, Jin-Woo Oh, Sang-Woo Joo, Jaebum Choo

Summary: A novel nanoplasmonic substrate was developed for biomedical applications, which showed strong hot spots for detecting biomarkers at low concentrations. The substrate, called AuNPs@M13, was made by immobilizing 60 nm gold nanoparticles onto the surface of an M13 bacteriophage scaffold. It demonstrated higher sensitivity and lower limit of detection compared to commercially available assays.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Single-atom Cu-attached MOFs as peroxide-like enzymes to construct dual-mode immunosensors for detection of breast cancer typing in serum

Ning Li, Ya Zhang, Ying Xu, Xiaofang Liu, Jian Chen, Mei Yang, Changjun Hou, Danqun Huo

Summary: The molecular subtype of breast cancer guides treatment and drug selection. Invasive tests can promote cancer cell metastasis, so the development of high-performance, low-cost diagnostic tools for cancer prognosis is crucial. Liquid biopsy techniques enable noninvasive, real-time, dynamic, multicomponent, quantitative, and long-term observations at the cellular, genetic, and molecular levels. A Cu-Zr metal-organic framework (MOF) nanoenzyme with monatomic Cu attachment has been synthesized and proven to have high catalytic performance. The sensor constructed using this nanoenzyme shows potential for accurate classification of breast cancer serum samples.

SENSORS AND ACTUATORS B-CHEMICAL (2024)

Article Chemistry, Analytical

Individually-addressable composite microneedle electrode array by mold-and-place method for glucose detection

Jeongmin Kim, Hyemin Kim, Seunghyun Park, Hyeonaug Hong, Yong Jae Kim, Jiyong Lee, Jaeho Kim, Seung-Woo Cho, Wonhyoung Ryu

Summary: This study presents a method to fabricate independently functioning microneedle (MN) electrodes with narrow intervals for high precision electrochemical sensing. The optimized mixture of photocurable polymer and single-wall carbon nanotubes was used to mold single composite MNs, which were then attached to pre-patterned electrodes. Plasma etching and electropolymerization were performed to enhance the electrochemical activity, and Prussian blue and glucose oxidase were electrodeposited on the MNs for glucose detection. The MN electrodes showed good sensitivity and linearity, and the feasibility of glucose detection was demonstrated in an in vivo mouse study.

SENSORS AND ACTUATORS B-CHEMICAL (2024)