4.7 Article

Evaluating a Bayesian modelling approach (INLA-SPDE) for environmental mapping

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 609, Issue -, Pages 621-632

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2017.07.201

Keywords

Elevation Gamma-ray spectrometry; X-ray fluorescent; Sample size; Markov chain Monte Carlo; Stochastic partial differential equation

Ask authors/readers for more resources

Understanding the uncertainty in spatial modelling of environmental variables is important because it provides the end-users with the reliability of the maps. Over the past decades, Bayesian statistics has been successfully used. However, the conventional simulation-based Markov Chain Monte Carlo (MCMC) approaches are often computationally intensive. In this study, the performance of a novel Bayesian inference approach called Integrated Nested Laplace Approximation with Stochastic Partial Differential Equation (INLA-SPDE) was evaluated using independent calibration and validation datasets of various skewed and non-skewed soil properties and was compared with a linear mixed model estimated by residual maximum likelihood (REML-LMM). It was found that INLA-SPDE was equivalent to REML-LMM in terms of the model performance and was similarly robust with sparse datasets (i.e. 40-60 samples). In comparison, INLA-SPDE was able to estimate the posterior marginal distributions of the model parameters without extensive simulations. It was concluded that INLA-SPDE had the potential to map the spatial distribution of environmental variables along with their posterior marginal distributions for environmental management. Some drawbacks were identified with INLA-SPDE, including artefacts of model response due to the use of triangle meshes and a longer computational time when dealing with non-Gaussian likelihood families. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Soil Science

Distribution of soil bacteria involved in C cycling across extensive environmental and pedogenic gradients

Peipei Xue, Budiman Minasny, Alex McBratney, Vanessa Pino, Mario Fajardo, Yu Luo

Summary: Microorganisms play crucial roles in soil processes, and different microbial functional groups control nutrient cycling in soils. This study investigated the environmental and soil factors that drive the distribution of bacterial functional groups involved in soil carbon cycling. The results showed that temperature, rainfall, and soil properties significantly influenced the bacterial functional groups, and agricultural practices also had significant impacts on the composition and responses of these groups.

EUROPEAN JOURNAL OF SOIL SCIENCE (2023)

Editorial Material Environmental Sciences

Studies from global regions indicate promising avenues for maintaining and increasing soil organic carbon stocks

Cornelia Rumpel, Farshad Amiraslani, Deborah Bossio, Claire Chenu, Magali Garcia Cardenas, Beverley Henry, Alejandro Fuentes Espinoza, Lydie-Stella Koutika, Jagdish Ladha, Beata Emoke Madari, Budiman Minasny, Adesola Olaleye, Saidou Nourou Sall, Yasuhito Shirato, Jean-Francois Soussana, Consuelo Varela-Ortega

REGIONAL ENVIRONMENTAL CHANGE (2023)

Article Environmental Sciences

Soil organic carbon content increase in the east and south of China is accompanied by soil acidification

Xiao-Lin Sun, Budiman Minasny, Yun-Jin Wu, Hui-Li Wang, Xiao-Hui Fan, Gan -Lin Zhang

Summary: The increase in soil organic carbon (OC) in China over the past two decades suggests that atmospheric carbon dioxide is being sequestered into the soil, mitigating climate change and improving soil health. However, there have also been reports of soil pH decrease nationwide, which may negatively impact soil quality for food production and the environment. This study investigates the relationship between soil OC and pH using large-scale soil survey data from two provinces in China and finds that the changes in OC and pH are significantly correlated, with increased soil nitrogen content as the linking factor. The decrease in pH is particularly significant in the eastern region of China, where soils are more neutral in pH. The study recommends exploring alternative methods of carbon sequestration in soil to avoid potential acidification effects caused by excessive nitrogen application.

SCIENCE OF THE TOTAL ENVIRONMENT (2023)

Article Soil Science

Transferability of a large mid-infrared soil spectral library between two Fourier-transform infrared spectrometers

Jonathan Sanderman, Asa Gholizadeh, Zampela Pittaki-Chrysodonta, Jingyi Huang, Jose Lucas Safanelli, Richard Ferguson

Summary: Large and publicly available soil spectral libraries are valuable resources for estimating soil properties. In this study, it was found that models developed using the USDA NSSC-KSSL MIR library could be successfully transferred to a secondary instrument with appropriate preprocessing and calibration transfer techniques.

SOIL SCIENCE SOCIETY OF AMERICA JOURNAL (2023)

Article Environmental Studies

Modelling the Whole Profile Soil Organic Carbon Dynamics Considering Soil Redistribution under Future Climate Change and Landscape Projections over the Lower Hunter Valley, Australia

Yuxin Ma, Budiman Minasny, Valerie Viaud, Christian Walter, Brendan Malone, Alex McBratney

Summary: Soil organic carbon (SOC) redistribution plays a significant role in affecting soil quality. This study introduces a coupled-model combining RothPC-1 and a soil redistribution model to simulate SOC changes in the Lower Hunter Valley area. Results show that erosion is mainly predicted in upslope areas and deposition in low-lying areas. The study emphasizes the importance of considering soil redistribution in SOC dynamics modeling to avoid overestimation of SOC stocks.
Article Geosciences, Multidisciplinary

Distinctive role of soil type and land use in driving bacterial communities and carbon cycling functions down soil profiles

Peipei Xue, Budiman Minasny, Alex McBratney, Neil L. Wilson, Yijia Tang, Yu Luo

Summary: Soil microbial communities are influenced by soil types and land use. This study investigated contrasting soils of natural forest and cropped vineyard in New South Wales, Australia and found that land use affected the bacterial community distribution in the topsoil, while soil types influenced the assembly of microbial communities in the subsoil. The study also revealed a decrease in topsoil organic carbon in the vineyard compared to the forest, which was correlated with changes in C-related genes and potentially accelerated carbon loss.

CATENA (2023)

Article Geosciences, Multidisciplinary

Using homosoils to enrich sparse soil data infrastructure: An example from Mali

Andree M. Nenkam, Alexandre M. J. -C. Wadoux, Budiman Minasny, Alex B. McBratney, Pierre C. S. Traore, Anthony M. Whitbread

Summary: Many areas in the world lack sufficient soil data, leading to ineffective soil-related studies and inadequate soil management strategies. This paper demonstrates how to find "homosoils", which are geographically distant but share similar soil-forming factors, in order to obtain new soil data for a study area. By clustering the study area into homogeneous areas and identifying a homosoil for each area using distance metrics, this approach provides a solution to the problem of sparse soil data. The concept of homosoils shows promise for future applications such as transferring soil models and agronomic experimental results between areas.

CATENA (2023)

Article Environmental Sciences

Seasonal Biotic Processes Vary the Carbon Turnover by Up To One Order of Magnitude in Wetlands

Chiara Pasut, Fiona H. M. Tang, Budiman Minasny, Charles R. Warren, Feike A. Dijkstra, William J. Riley, Federico Maggi

Summary: In this study, the turnover time of soil organic carbon (SOC) pools in global wetlands and the governing processes were quantified using a comprehensive process-based biogeochemical model. The results showed that SOC turnover time ranged from 1 to 1,000 years and was mainly controlled by anaerobic and aerobic respiration, as well as abiotic destabilization from soil minerals. The findings also revealed seasonal variability in SOC turnover, indicating the need for better accounting of seasonal fluctuations to estimate carbon exchanges between wetlands and the atmosphere at geographic scales.

GLOBAL BIOGEOCHEMICAL CYCLES (2023)

Article Multidisciplinary Sciences

Baseline high-resolution maps of organic carbon content in Australian soils

Alexandre M. J-C. Wadoux, Mercedes Roman Dobarco, Brendan Malone, Budiman Minasny, Alex B. McBratney, Ross Searle

Summary: This article introduces a new dataset of high-resolution gridded total soil organic carbon content data across Australia. The dataset includes six maps of soil organic carbon content at two resolutions and provides uncertainty estimates. The maps were obtained through interpolation of organic carbon measurements and validation showed small errors and adequate prediction uncertainty. These soil carbon maps are important for monitoring carbon stock changes and assessing the influence of climate change, land management, and greenhouse gas offset.

SCIENTIFIC DATA (2023)

Article Environmental Sciences

A Continental-Scale Estimate of Soil Organic Carbon Change at NEON Sites and Their Environmental and Edaphic Controls

Jie Hu, Alfred E. Hartemink, Ankur R. Desai, Philip A. Townsend, Rose Z. Abramoff, Zhe Zhu, Debjani Sihi, Jingyi Huang

Summary: Current carbon cycle models have focused on the effects of climate and land-use change on primary productivity and microbial-mineral dependent carbon turnover in the topsoil, but have overlooked the importance of vertical soil processes and soil response to land-use change along the profile. In this study, spatial-temporal analysis was used to estimate soil organic carbon (SOC) change at NEON sites in the USA over 30 years. The study found that different soil types and land-use practices had significant impacts on SOC accumulation or loss, and identified runoff/erosion, leaching potential, vertical translocation, and mineral sorption as the key factors controlling SOC variation.

JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES (2023)

Article Environmental Sciences

Mapping and monitoring peatland conditions from global to field scale

Budiman Minasny, Diana Vigah Adetsu, Matt Aitkenhead, Rebekka R. E. Artz, Nikki Baggaley, Alexandra Barthelmes, Amelie Beucher, Jean Caron, Giulia Conchedda, John Connolly, Raphael Deragon, Chris Evans, Kjetil Fadnes, Dian Fiantis, Zisis Gagkas, Louis Gilet, Alessandro Gimona, Stephan Glatzel, Mogens H. Greve, Wahaj Habib, Kristell Hergoualc'h, Cecilie Hermansen, Darren B. Kidd, Triven Koganti, Dianna Kopansky, David J. Large, Tuula Larmola, Allan Lilly, Haojie Liu, Matthew Marcus, Maarit Middleton, Keith Morrison, Rasmus Jes Petersen, Tristan Quaife, Line Rochefort, Linda Rudiyanto, Linda Toca, Francesco N. Tubiello, Peter Lystbaek Weber, Simon Weldon, Wirastuti Widyatmanti, Jenny Williamson, Dominik Zak

Summary: Peatlands, covering only a small percentage of the Earth's surface, are a significant carbon store. However, they are under threat due to degradation. To protect and reduce emissions from these carbon-rich ecosystems, countries have implemented regulations. This paper reviews the current state of knowledge on mapping and monitoring peatlands and highlights the need for more consistent approaches.

BIOGEOCHEMISTRY (2023)

Article Ecology

Mapping soil organic carbon fractions for Australia, their stocks, and uncertainty

Mercedes Roman Dobarco, Alexandre M. J-C. Wadoux, Brendan Malone, Budiman Minasny, Alex B. McBratney, Ross Searle

Summary: This study analyzed the soil organic carbon (SOC) composition in Australia, and found that it consists of three fractions: mineral-associated organic carbon (MAOC), particulate organic carbon (POC), and pyrogenic organic carbon (PyOC). These fractions have distinct turnover rates and are influenced differently by different soil environments.

BIOGEOSCIENCES (2023)

Article Environmental Sciences

Comparing nearshore and embayment scale assessments of submarine groundwater discharge: Significance of offshore groundwater discharge as a nutrient pathway

Toshimi Nakajima, Mao Kuragano, Makoto Yamada, Ryo Sugimoto

Summary: This study compared the contribution of submarine groundwater discharge (SGD) to river nutrient budgets at nearshore and embayment scales, and found that SGD-derived nutrients become more important at larger spatial scales.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Impact of NO2 emissions from household heating systems with wall-mounted gas stoves on indoor and ambient air quality in Chinese urban areas

Fan Liu, Lei Zhang, Chongyang Zhang, Ziguang Chen, Jingguang Li

Summary: NO2 emissions from wall-mounted gas stoves used for household heating have become a significant source of indoor pollution in Chinese urban areas. The high indoor concentration of NO2 poses potential health risks to residents. It is urgently necessary to establish relevant regulations and implement emission reduction technologies to reduce NO2 emissions from wall-mounted gas stoves.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Letter Environmental Sciences

Letter to the editor regarding Collard et al. (2023): Persistence and mobility (defined as organic-carbon partitioning) do not correlate to the detection of substances found in surface and groundwater: Criticism of the regulatory concept of persistent and mobile substances

Hans Peter H. Arp, Raoul Wolf, Sarah E. Hale, Sivani Baskaran, Juliane Gluege, Martin Scheringer, Xenia Trier, Ian T. Cousins, Harrie Timmer, Roberta Hofman-Caris, Anna Lennquist, Andre D. Bannink, Gerard J. Stroomberg, Rosa M. A. Sjerps, Rosa Montes, Rosario Rodil, Jose Benito Quintana, Daniel Zahn, Herve Gallard, Tobias Mohr, Ivo Schliebner, Michael Neumann

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Harnessing the composition of dissolved organic matter in lagoon sediment in association with rare earth elements using fluorescence and UV-visible absorption spectroscopy

Philomina Onyedikachi Peter, Binessi Edouard Ifon, Francois Nkinahamira, Kayode Hassan Lasisi, Jiangwei Li, Anyi Hu, Chang-Ping Yu

Summary: This study investigates the relationship between dissolved organic matter (DOM) and Rare Earth Elements (REEs) in sediments from Yundang Lagoon, China. The results show four distinct fluorescent components, with protein-like substances being the most prevalent. Additionally, the total fluorescence intensity and LREE concentrations exhibit a synchronized increase from Outer to Inner to Songbai Lake core sediments. The findings demonstrate a strong correlation between DOM content and pollution levels.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity

Surya Gupta, Pasquale Borrelli, Panos Panagos, Christine Alewell

Summary: The objective of this study is to incorporate soil hydraulic properties into the erodibility factor (K) of USLE-type models. By modifying and improving the existing equations for soil texture and permeability, the study successfully included information on saturated hydraulic conductivity (Ksat) into the calculation of K factor. Using the Random Forest machine learning algorithm, two independent K factor maps with different spatial resolutions were generated. The results show that the decrease in K factor values has a positive impact on the modeling of soil erosion rates.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Comparison of adsorption-extraction (AE) workflows for improved measurements of viral and bacterial nucleic acid in untreated wastewater

Jesmin Akter, Wendy J. M. Smith, Yawen Liu, Ilho Kim, Stuart L. Simpson, Phong Thai, Asja Korajkic, Warish Ahmed

Summary: The choice of workflow in wastewater surveillance has a significant impact on SARS-CoV-2 concentrations, while having minimal effects on HF183 and no effect on HAdV 40/41 concentrations. Certain components in the workflow can be interchangeable, but factors such as buffer type, chloroform, and homogenization speed can affect the recovery of viruses and bacteria.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Insights the dominant contribution of biomass burning to methanol-soluble PM2.5 bounded oxidation potential based on multilayer perceptron neural network analysis in Xi'an, China

Yu Luo, Xueting Yang, Diwei Wang, Hongmei Xu, Hongai Zhang, Shasha Huang, Qiyuan Wang, Ningning Zhang, Junji Cao, Zhenxing Shen

Summary: Atmospheric PM2.5, which can generate reactive oxygen species (ROS), is associated with cardiorespiratory morbidity and mortality. The study found that both the mass concentration of PM2.5 and the DTT activity were higher during the heating season than during the nonheating season. Combustion sources were the primary contributors to DTT activity during the heating season, while secondary formation dominated during the nonheating season. The study also revealed that biomass burning had the highest inherent oxidation potential among all sources investigated.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

A macroplastic vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i

Erin L. Murphy, Leah R. Gerber, Chelsea M. Rochman, Beth Polidoro

Summary: Plastic pollution has devastating consequences for marine organisms. This study uses a trait-based framework to develop a vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i. The index ranks 63 study species based on their vulnerability to macroplastic pollution, providing valuable information for species monitoring and management priorities.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Anthropic disturbances impact the soil microbial network structure and stability to a greater extent than natural disturbances in an arid ecosystem

Kenji Maurice, Amelia Bourceret, Sami Youssef, Stephane Boivin, Liam Laurent-Webb, Coraline Damasio, Hassan Boukcim, Marc-Andre Selosse, Marc Ducousso

Summary: Growing pressure from climate change and agricultural land use is destabilizing soil microbial community interactions. Little is known about microbial community resistance and adaptation to disturbances, hindering our understanding of recovery latency and implications for ecosystem functioning. This study found that anthropic disturbance and natural disturbance have different effects on the topology and stability of soil microbial networks.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Adsorption of metal ions by oceanic manganese nodule and deep-sea sediment: Behaviour, mechanism and evaluation

Yunhao Li, Yali Feng, Haoran Li, Yisong Yao, Chenglong Xu, Jinrong Ju, Ruiyu Ma, Haoyu Wang, Shiwei Jiang

Summary: Deep-sea mining poses a serious threat to marine ecosystems and human health by disturbing sediment and transmitting metal ions through the food chain. This study developed a new regenerative adsorption material, OMN@SA, which effectively removes metal ions. The adsorption mechanism and performance of the material for metal ion fixation were investigated.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Advanced oxidation process of valsartan by activated peroxymonosulfate: Chemical characterization and ecotoxicological effects of its byproducts

Antonio Medici, Margherita Lavorgna, Marina Isidori, Chiara Russo, Elena Orlo, Giovanni Luongo, Giovanni Di Fabio, Armando Zarrelli

Summary: Valsartan, a widely used antihypertensive drug, has been detected in high concentrations in surface waters due to its unchanged excretion and incomplete degradation in wastewater treatment plants. This study investigated the degradation of valsartan and identified 14 degradation byproducts. The acute and chronic toxicity of these byproducts were evaluated in key organisms in the freshwater trophic chain.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Photodegradation of typical pharmaceuticals changes toxicity to algae in estuarine water: A metabolomic insight

Jiang Lin, Lianbao Chi, Qing Yuan, Busu Li, Mingbao Feng

Summary: This study investigated the photodegradation behavior and product formation of two representative pharmaceuticals in simulated estuary water. The study found that the formed transformation products of these pharmaceuticals have potential toxicity on marine organisms, including oxidative stress and damage to cellular components.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Association of ambient air pollution and pregnancy rate among women undergoing assisted reproduction technology in Fujian, China: A retrospective cohort study

Hua Fang, Dongdong Jiang, Ye He, Siyi Wu, Yuehong Li, Ziqi Zhang, Haoting Chen, Zixin Zheng, Yan Sun, Wenxiang Wang

Summary: This study revealed that exposure to lower levels of air pollutants led to decreased pregnancy rates, with PM10, NO2, SO2, and CO emerging as the four most prominent pollutants. Individuals aged 35 and above exhibited heightened susceptibility to pollutants.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

The predictive machine learning model of a hydrated inverse vulcanized copolymer for effective mercury sequestration from wastewater

Ali Shaan Manzoor Ghumman, Rashid Shamsuddin, Amin Abbasi, Mohaira Ahmad, Yoshiaki Yoshida, Abdul Sami, Hamad Almohamadi

Summary: In this study, inverse vulcanized polysulfides (IVP) were synthesized by reacting molten sulfur with 4-vinyl benzyl chloride, and then functionalized using N-methyl D-glucamine (NMDG). The functionalized IVP showed a high mercury adsorption capacity and a machine learning model was developed to predict the amount of mercury removed. Furthermore, the functionalized IVP can be regenerated and reused, providing a sustainable and cost-effective adsorbent.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death

Rita Bonfiglio, Renata Sisto, Stefano Casciardi, Valeria Palumbo, Maria Paola Scioli, Erica Giacobbi, Francesca Servadei, Gerry Melino, Alessandro Mauriello, Manuel Scimeca

Summary: This study investigated the presence of aluminum in human colon cancer samples and its potential association with biological processes involved in cancer progression. Aluminum was found in tumor areas of 24% of patients and was associated with epithelial to mesenchymal transition (EMT) and cell death. Additional analyses revealed higher tumor mutational burden and mutations in genes related to EMT and apoptosis in aluminum-positive colon cancers. Understanding the molecular mechanisms of aluminum toxicity may improve strategies for the management of colon cancer patients.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)