4.8 Article

Potential Hazards of Brominated Carbon Sorbents for Mercury Emission Control

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 49, Issue 4, Pages 2496-2502

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es5052793

Keywords

-

Funding

  1. National Science and Engineering Research Council (NSERC)
  2. National Natural Science Foundation of China [U1261204]

Ask authors/readers for more resources

Mercury is a toxic air pollutant, emitted from the combustion of coal. Activated Carbon (AC) or other carbon sorbent (CS) injection into coal combustion flue gases can remove elemental mercury through an adsorption process. Recently, a brominated CS with biomass ash as the carbon source (Br-Ash) was developed as an alternative for costly AC-based sorbent for mercury capture. After mercury capture, these sorbents are disposed in landfill, and the stability of bromine and captured mercury is of paramount importance. The objective of this study is to determine the fate of mercury and bromine from Br-Ash and brominated AC after their service. Mercury and bromine leaching tests were conducted using the standard toxicity characteristic leaching procedure (TCLP). The mercury was found to be stable on both the BrAsh and commercial brominated AC sorbents, while the bromine leached into the aqueous phase considerably. Mercury pulse injection tests on the sorbent material after leaching indicate that both sorbents retain significant mercury capture capability even after the majority of bromine was removed. Testing of the Br-Ash sorbent over a wider range of pH and liquid:solid ratios resulted in leaching of <5% of mercury adsorbed on the Br-Ash. XPS analysis indicated more organically bound Br and less metalBr bonds after leaching.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available