4.4 Article

Protective effect of glutamine on the main and adjacent organs damaged by ischemia-reperfusion in rats

Journal

PROTOPLASMA
Volume 254, Issue 6, Pages 2155-2168

Publisher

SPRINGER WIEN
DOI: 10.1007/s00709-017-1102-3

Keywords

Cytoprotective enzymes; Endoplasmic reticulum stress; Inflammation; Nitric oxide; Oxidative stress

Ask authors/readers for more resources

Intestinal ischemia and reperfusion (I/R) causes cellular and tissue damage to the intestine and remote organs such as the liver. Increased production of ROS and nitric oxide and dysregulation of cytoprotective enzymes may be involved in intestinal I/R. The aim was to evaluate the protective effects of glutamine on the intestine and liver of rats with intestinal I/R injury. Twenty male Wistar rats (300 g) were divided into four groups: sham-operated (SO), glutamine + SO (G + SO), I/R, and glutamine + I/R (G + I/R). Occlusion of the SMA for 30 min was followed by 15-min reperfusion. Glutamine (25 mg/kg/day) was administered once daily 24 and 48 h before I/R induction. Blood and tissue of were collected for aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, histopathological analysis, immunohistochemistry of IL-1 beta and TNF-alpha, thiobarbituric acid reactive substance (TBARS) and nitric oxide, Nrf2/keap1, superoxide dismutase (SOD), NADPH quinone oxidoreductase1 (NQO1), inducible nitric oxide synthase (iNOS), heat shock protein (HSP70), glucose-regulated protein 78 (GRP78), and activating transcription factor 6 (ATF-6) by western blot. Statistic analysis by ANOVA-Student-Newman-Keuls test (mean +/- SE) significantly was p < 0.05. Tissue damage, AST, ALT, IL-1 beta, TNF-alpha, TBARS, NO, Keap1, iNOS, GRP78, and ATF-6 expression were significantly lower in the G + I/R group as compared to the I/R group. Expression of Nrf2, SOD, NQO1, and HSP70, was significantly higher in the G + I/R group as compared to I/R group. Pre-treatment with glutamine provided protection against oxidative damage in the intestine and liver in an experimental model of intestinal I/R.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available