4.8 Article

Repression of phosphatidylinositol transfer protein a ameliorates the pathology of Duchenne muscular dystrophy

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1703556114

Keywords

Duchenne muscular dystrophy; genetic modifier; phosphatidylinositol transfer protein-alpha; skeletal muscle

Funding

  1. Duchenne Research Fund
  2. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
  3. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico
  4. Institutos Nacionais de Ciencia e Tecnologia
  5. Associacao de Assistencia a Crianca Deficiente
  6. Bernard F. and Alva B. Gimbel Foundation
  7. National Institutes of Health [R01AR064300-01A1]
  8. Boston Children's Hospital Intellectual and Developmental Disabilities Research Center [NIH P30 HD-18655]
  9. Muscular Dystrophy Association Development Grant [MDA352465]
  10. Pfizer, Inc.

Ask authors/readers for more resources

Duchenne muscular dystrophy (DMD) is a progressive muscle wasting disease caused by X-linked inherited mutations in the DYSTROPHIN (DMD) gene. Absence of dystrophin protein from the sarcolemma causes severe muscle degeneration, fibrosis, and inflammation, ultimately leading to cardiorespiratory failure and premature death. Although there are several promising strategies under investigation to restore dystrophin protein expression, there is currently no cure for DMD, and identification of genetic modifiers as potential targets represents an alternative therapeutic strategy. In a Brazilian golden retriever muscular dystrophy (GRMD) dog colony, two related dogs demonstrated strikingly mild dystrophic phenotypes compared with those typically observed in severely affected GRMD dogs despite lacking dystrophin. Microarray analysis of these escaper dogs revealed reduced expression of phosphatidylinositol transfer protein-a (PITPNA) in escaper versus severely affected GRMD dogs. Based on these findings, we decided to pursue investigation of modulation of PITPNA expression on dystrophic pathology in GRMD dogs, dystrophin-deficient sapje zebrafish, and human DMD myogenic cells. In GRMD dogs, decreased expression of Pitpna was associated with increased phosphorylated Akt (pAkt) expression and decreased PTEN levels. PITPNA knockdown by injection of morpholino oligonucleotides in sapje zebrafish also increased pAkt, rescued the abnormal muscle phenotype, and improved long-term sapje mutant survival. In DMD myotubes, PITPNA knockdown by lentiviral shRNA increased pAkt and increased myoblast fusion index. Overall, our findings suggest PIPTNA as a disease modifier that accords benefits to the abnormal signaling, morphology, and function of dystrophic skeletal muscle, and may be a target for DMD and related neuromuscular diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available