4.2 Article

Computational modeling of long-term effects of prophylactic vertebroplasty on bone adaptation

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954411916683222

Keywords

Vertebroplasty; bone adaptation; fracture prevention; micro-finite element analysis; computational simulation

Funding

  1. European Union Osteoporotic Virtual Physiological Human Project [VPHOP FP7-ICT2008-223865]

Ask authors/readers for more resources

Cement augmentation in vertebrae (vertebroplasty) is usually used to restore mechanical strength after spinal fracture but could also be used as a prophylactic treatment. So far, the mechanical competence has been determined immediately post-treatment, without considering long-term effects of bone adaptation. In this work, we investigated such long-term effects of vertebroplasty on the stiffness of the augmented bone by means of computational simulation of bone adaptation. Using micro-finite element analysis, we determined sites of increased mechanical stress (stress raisers) and stress shielding and, based on the simulations, regions with increased or decreased bone loss due to augmentation. Cement volumes connecting the end plates led to increased stress shielding and bone loss. The increased stiffness due to the augmentation, however, remained constant over the simulation time of 30years. If the intervention was performed at an earlier time point, it did lead to more bone loss, but again, it did not affect long-term stability as this loss was compensated by bone gains in other areas. In particular, around the augmentation cement, bone structures were preserved, suggesting a long-term integration of the cement in the augmented bone. We conclude that, from a biomechanical perspective, the impact of vertebroplasty on the bone at the microstructural level is less detrimental than previously thought.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available