4.6 Article

A kinetic mechanism for the thermal decomposition of titanium tetraisopropoxide

Journal

PROCEEDINGS OF THE COMBUSTION INSTITUTE
Volume 36, Issue 1, Pages 1019-1027

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2016.08.062

Keywords

TTIP; Titanium dioxide; Nanoparticles; Reaction mechanism; Titanium tetraisopropoxide

Funding

  1. National Research Foundation (NRF), Prime Minister's Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme
  2. Huntsman Pigments

Ask authors/readers for more resources

This work presents the first systematically derived and thermodynamically consistent mechanism to describe the thermal decomposition of titanium tetraisopropoxide (TTIP). The mechanism is based on an analogy between the decomposition of the isopropoxide branches and the decomposition of isopropanol. Flux and sensitivity analyses were used to identify the main reaction pathways in the proposed mechanism as the step-wise release of C3H6 via four-member ring transition states, the successive abstraction of CH3 radicals via C-C bond cleavage followed by hydrogen abstraction to form C = C double bonds, and hydrogen abstraction from the isopropoxide methyl groups followed by the release of C3H6. The final decomposition product was titanium hydroxide, Ti(OH)(4). Rate constants were calculated using conventional and variational transition state theories for reactions in the first two pathways. The calculated rates are similar to the rates calculated for the corresponding isopropanol reactions, providing support for the analogy with isopropanol. The mechanism was used to simulate the ignition delay of isopropanol and TTIP. Excellent agreement was observed with experimental data for isopropanol. However, the mechanism over predicted the ignition delay for TTIP. The discrepancy was shown to be unlikely to be caused by the modest difference between the true reaction rates for the TTIP system and those assumed based on the analogy with isopropanol. It was found that the sensitivity of the TTIP decomposition to the presence of water must be caused by additional chemical pathways than the ones given by isopropanol analogy. (C) 2016 by The Combustion Institute. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available