4.7 Article

Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls

Journal

POWDER TECHNOLOGY
Volume 308, Issue -, Pages 214-234

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.powtec.2016.12.025

Keywords

Transient natural convection; Trapezoidal cavity; Finite element method; Non-Newtonian nanofluid; Sinusoidal boundary conditions

Funding

  1. UKM research grant [DIP-2014-015]
  2. Ministry of Higher Education, Malaysia [GSP/1/2015/SG04/UKM/01/1]

Ask authors/readers for more resources

Transient, laminar natural convection in a trapezoidal cavity filled with a non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls is studied numerically by using the finite element method. The sloping walls of the cavity are heated by sinusoidal temperature distributions, while the horizontal walls allow no heat transfer to the surrounding. Water-based nanofluids with Ag or Cu or Al2O3 or TiO2 nanoparticles are chosen for investigation. The governing parameters of this study are the Rayleigh number (10(4) <= Ra <= 10(6)), phase deviation (0 <= gamma <= pi), amplitude ratio (0 <= epsilon <= 1), power-law index (0.6 <= n <= 1.4), sidewall inclination angle (0 degrees <= phi <= 21.8 degrees), nanoparticle volume fraction (0 <= phi <= 0.2), and dimensionless time (0 <= tau <= 0.2). The results show that the heat transfer rate increases significantly by the addition of phase deviation. Strong heat transfer enhancements are obtained by higher sidewall inclination angles. However, for a square cavity, the heat transfer approaches the steady-state condition with the increment of the dimensionless time. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Mechanical

Nonlinear radiations in chemically reactive Walter's B nanoliquid flow through a rotating cone

Kotha Gangadhar, R. Edukondala Nayak, M. Venkata Subba Rao, Ali J. Chamkha

Summary: This paper examines the mechanism of radiative Walter's B nanofluid on a rotational cone under magnetic regime, including the theoretical and practical implications of time-dependent fluid flow caused by cone rotation in engineering and applied sciences, as well as the characteristics of thermophoresis, Brownian motion, and chemical reactions. Self-similar solutions are obtained and the numerical result of a reduced nonlinear system is obtained using the Runge-Kutta-Fehlberg fourth-fifth procedure. Comparisons with previously published material are made to verify the outcome. The conflicting influences of the Brownian motion parameter on heat and mass transfer rates, as well as temperature and concentration fields, are found. The presence of chemical reactions may be more beneficial in developing reaction processes.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING (2023)

Article Engineering, Mechanical

Magnetization of nanofluid due to convectively heated bended surface with space-dependent heat generation

K. Gangadhar, M. Venkata Subba Rao, D. Naga Bhargavi, Ali J. Chamkha

Summary: This research focuses on the hydrothermal characteristics of magnetohydrodynamic nanofluid flow over a slippery permeable bended surface. The study reveals that the concentration gradient of nanoparticles is affected by Brownian motion and thermophoretic force. The results also show that increasing magnetic parameter values decrease the velocity field magnitude and pressure in the boundary layer.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING (2023)

Article Thermodynamics

Hybrid nanofluid magnetohydrodynamic mixed convection in a novel W-shaped porous system

Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Rama Subba Reddy Gorla, Ali J. Chamkha

Summary: This study numerically examines the influence of various geometric parameters on the thermal performance of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed convection. The results show that an increase in the bottom undulation height improves the thermal energy transfer despite the reduction of fluid volume. The overall thermal energy transport is improved by increasing Reynolds number, Richardson number, and Darcy number, while it is suppressed by increasing Hartmann number.

INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW (2023)

Article Engineering, Mechanical

Analysis of Arrhenius activation energy on magnetohydrodynamic gyrotactic microorganism flow through porous medium over an inclined stretching sheet with thermophoresis and Brownian motion

Bhupendra Kumar Sharma, Umesh Khanduri, Nidhish K. Mishra, Ali J. Chamkha

Summary: This study numerically investigates the combined effects of Arrhenius activation and microorganisms on unsteady flow through a porous medium with thermophoresis and Brownian motion. The results have important implications for geothermal engineering, energy conversion, disposal of nuclear waste material, as well as applications in medical fields such as gene therapy and drug delivery systems.

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING (2023)

Article Thermodynamics

Magnetic dipole effects on non-Newtonian ferrofluid over a stretching sheet

Hussan Zeb, Hafiz A. Wahab, Umar Khan, Ali J. Chamkha

Summary: This study analyzed the characteristics of heat transfer in non-Newtonian ferrofluids produced by stretchable sheet and investigated the effects of Arrhenius activation energy and magnetic dipole. By applying a similarity ansatz and Runge-Kutta method, the computational solution for the governing system was determined. The influence of beneficial physical parameters on momentum, energy, and concentration profiles was shown through graphs.

HEAT TRANSFER (2023)

Article Thermodynamics

Heat and mass transfer of two immiscible flows of Jeffrey fluid in a vertical channel

Shreedevi Kalyan, Ashwini Sharan, Ali J. Chamkha

Summary: This article examines the effect of heat and mass transfer flow of two immiscible Jeffrey fluids in a vertical channel. The impact of different physical parameters on the flow and distribution of velocity, temperature, and concentration is illustrated graphically.

HEAT TRANSFER (2023)

Article Energy & Fuels

Entropy Generation and Mixed Convection of a Nanofluid in a 3D Wave Tank with Rotating Inner Cylinder

Ammar I. I. Alsabery, Mohammed J. J. Alshukri, Nasr A. A. Jabbar, Adel A. A. Eidan, Ishak Hashim

Summary: The generation of entropy and mixed convection in a nanofluid-filled 3D wavy tank containing a rotating cylinder is investigated. The effects of Richardson number, nanoparticle volume fraction, and number of oscillations on heat transfer enhancement are studied through numerical simulations using the FEM. The results show that increasing the nanoparticle volume fraction can enhance heat transfer for low values of the Richardson number and oscillation.

ENERGIES (2023)

Article Thermodynamics

Three-dimensional simulation of full conduction-convection-radiation coupling with high Rayleigh numbers

Alexander Nee, Bubryur Kim, Ali J. Chamkha

Summary: The present study focuses on the numerical analysis of heat transfer and fluid flow patterns in a three-dimensional problem formulation. A hybrid mathematical model is built, and the equations are solved using MATLAB. The results show that the emissivity of the vertical walls can be used as a tool to control thermal and flow behavior.

INTERNATIONAL JOURNAL OF THERMAL SCIENCES (2023)

Article Physics, Multidisciplinary

Natural convection analysis of copper-alumina/water hybrid nanofluids in a U-shaped cavity with adiabatic wavy walls

M. S. Asmadi, R. Md Kasmani, Z. Siri, H. Saleh

Summary: The numerical analysis of natural convection heat transfer of copper-alumina hybrid nanofluid inside a U-shaped enclosure with adiabatic wavy walls shows significant advantages of the hybrid nanofluid in improving thermal performance compared to its mono nanofluid components and pure water.

WAVES IN RANDOM AND COMPLEX MEDIA (2022)

Article Energy & Fuels

Melting control of phase change material of semi-cylinders inside a horizontal baffled channel: Convective laminar fluid-structure interaction

Salah M. Salih, Ammar I. Alsabery, Ahmed K. Hussein, Muneer A. Ismael, Mohammad Ghalambaz, Ishak Hashim

Summary: The paper investigates the forced fluid flow within a horizontal channel containing two semi-cylinders and two flexible baffles. The melting of phase change material, convective and conductive heat transfers, and fluid-structure interaction are considered. The influential parameters are dimensionless time, elasticity modulus of the baffles, and Reynolds number. The results show that increasing Reynolds number and decreasing elasticity modulus lead to a decrease and increase, respectively, in the melting volume fraction.

JOURNAL OF ENERGY STORAGE (2023)

Article Green & Sustainable Science & Technology

Numerical Analysis of Transfer of Heat by Forced Convection in a Wavy Channel

Naseer Abboodi Madlool, Mohammed J. Alshukri, Ammar I. Alsabery, Adel A. Eidan, Ishak Hashim

Summary: This paper investigates the convective heat transfer of laminar forced convection in a wavy channel. Numerical simulations using the finite element method are performed to obtain the 3D steady flow and heat transfer characteristics of Newtonian fluid. The study analyzes the effects of Reynolds number (10 < Re < 1000), number of oscillations (0 < N < 5), and wall amplitude (0.05 < A < 0.2) on the heat transfer. The results show that the average Nusselt number increases with the Reynolds number, and the number of oscillations and wall amplitude also affect the heat transfer.

INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED (2023)

Article Thermodynamics

Unsteady free convection in a composite enclosure having flexible wall

Abeer Alhashash, Habibis Saleh

Summary: Transient free convection in a composite enclosure with a cold flexible plate and a hot rigid plate is simulated numerically. The fluid-structure interaction is solved using the Arbitrary-Lagrangian-Eulerian (ALE) approach. The development of convective flow goes through initial, transitional, and stationary states, with the shape of the flexible plate varying depending on the Darcy regime.

ADVANCES IN MECHANICAL ENGINEERING (2023)

Article Energy & Fuels

Enhancement of conjugate heat transfer in an enclosure by utilizing water and nano encapsulated phase change materials with active cylinder

Abeer Alhashash, Habibis Saleh

Summary: The conjugate heat transfer in a differentially heated enclosure with an active cylinder placed at the center-line is numerically studied. Water (H2O) and nano-encapsulated phase change materials (NEPCMs) are filled in the free space between the cylinder and the walls of the enclosure. The placement of the peak Nusselt number values is heavily influenced by the rotational direction.

JOURNAL OF ENERGY STORAGE (2023)

Article Energy & Fuels

Convective flow analysis for moderate Rayleigh numbers of nano encapsulated phase change materials-water filled enclosure with various thermal conditions

Abeer Alhashash, Habibis Saleh

Summary: The numerical study focused on the effect of heating exponent and frequency on the convective flow and melting distribution inside a square enclosure filled with hybrid nanofluid. The study used a Galerkin finite element method to solve the governing equations and compared the results with previously published articles. The research found that the lowest heating exponent and frequency resulted in the best thermal performance.

JOURNAL OF ENERGY STORAGE (2023)

Article Thermodynamics

Thermal entropy generation and exergy efficiency analyses of coiled wire inserted nanodiamond + Fe3O4/water hybrid nanofluid in a tube

L. Syam Sundar, Solomon Mesfin, E. Venkata Raman, V. Punnaiah, Ali J. Chamkha, Antonio C. M. Sousa

Summary: The study demonstrates that using hybrid nanofluids with coiled wire inserts in a tube can significantly enhance heat transfer performance and reduce thermal entropy generation, thereby increasing the exergy efficiency of water flow.

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY (2022)

Article Engineering, Chemical

Modelling of annular flow and sand erosion in bends using a thin liquid film method

Ri Zhang, Shasha Zhang, Mengyan Ding

Summary: A thin liquid film method is proposed to evaluate sand erosion in annular flow. This method considers the direct interaction between the liquid film and gas core, as well as the entrainment and deposition of droplets. The erosion rate is calculated by considering the effects of liquid entrainment and particle velocity decay. The method is fully verified by comparing with experimental data.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Study on the mechanical properties of sandstone-shale composite continental shale gas based on the discrete element method

Yu Suo, Xianheng Su, Wenyuan He, Xiaofei Fu, Zhejun Pan

Summary: This research investigates the mechanical properties of sandstone-shale composite through orthogonal experimental method and discrete element simulation. The results show that different lithologies and thickness ratios can affect the strength and fracture mode of the composite rock samples.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Fluidized bed finishing of additively manufactured objects: The influence of operating parameters

Maurizio Troiano, Andrea El Hassanin, Roberto Solimene, Alessia Teresa Silvestri, Fabrizio Scala, Antonino Squillace, Piero Salatino

Summary: This study investigates the potential of Fluidized Bed Finishing (FBF) for square flat AlSi10Mg specimens manufactured via Laser-Powder Bed Fusion (L-PBF) additive manufacturing technology. The results show that good finishing can be achieved using rotation-assisted tests, with a maximum reduction of surface roughness by 67%. Steel particles are found to be the most effective bed material.

POWDER TECHNOLOGY (2024)

Review Engineering, Chemical

New insights on the role of seawater in sulfide ore flotation - A review

Ningbo Song, Wanzhong Yin, Jin Yao

Summary: Seawater's dissolved salts and minerals have various effects on the flotation process, including influencing the characteristics and behavior of flotation factors, as well as affecting the surface of sulfide minerals. In most cases, seawater has adverse effects on the flotation of sulfide minerals, but these effects can be mitigated by adjusting the reagents.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Bubble self-organization in pulsed annular gas-solid fluidized beds

Kaiqiao Wu, Shuxian Jiang, Victor Francia, Marc-Olivier Coppens

Summary: In rectangular and cylindrical annular fluidized beds, pulsating gas flow can create regular bubble patterns, overcoming challenges seen in conventional units. This study provides new opportunities for modularization of fluidized bed operations.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Vibro-fluidization of cohesive particles

Shuo Li, Huili Zhang, Jan Baeyens, Miao Yang, Zehao Li, Yimin Deng

Summary: The paper assesses the behavior of cohesive Geldart C-type particles when fluidized by air with the aid of vibration. It determines that mechanical vibration is a simple and effective method to improve the fluidity of cohesive particles during fluidization.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Hydrothermal, entropy generation and exergy performances analysis in a mini-channel with combination of longitudinal and transverse vortex generators using Al2O3 nanofluids

Zhenfei Feng, Qingyuan Zhang, Shanpan Liang, Zhenzhou Li, Fangwen Guo, Jinxin Zhang, Ding Yuan

Summary: A new micro/mini-channel heat sink (MCHS) with a combined structure of longitudinal and transverse vortex generators is designed, using Al2O3 nanofluid as the working medium. The study explores the effects of transverse vortex generator shape and longitudinal vortex generator angle on the hydraulic and thermal characteristics, comprehensive performance, entropy generation, and exergy efficiency. The results show that the triangular transverse vortex generator improves the comprehensive performance and exergy efficiency. Combined with the longitudinal vortex generator, the MCHS achieves the best comprehensive performance, entropy generation, and exergy efficiency when the Reynolds number is 742.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Predicting 3D particles shapes based on 2D images by using convolutional neural network

Kostas Giannis, Christoph Thon, Guoqing Yang, Arno Kwade, Carsten Schilde

Summary: This study presents a 3D convolutional neural network (3D-CNN) methodology for generating realistic 3D models of particles. The method trains on 2D projections of particle images to predict their 3D shapes, and evaluates the accuracy of the predictions using Fourier shape descriptors (FSDs). This methodology has wide applications in particle shape analysis.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Experimental study on oxidation and shell-breaking characteristics of individual aluminum particles at high temperature

Zheng-qing Zhou, Lu-jia Chai, Yu-long Zhang, Ya-bin Wang, Ze-chen Du, Tian-yi Wang, Yu-zhe Liu

Summary: The dynamic oxidation and shell-breaking processes of aluminum nanoparticles (ANPs) during heating were studied using in situ transmission electron microscopy. The results revealed that the changes in shell thickness can be divided into three stages, and the active aluminum content of ANP decreased before shell-breaking.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

An improved breakage model with a fast-cutting method for simulating the breakage of polyhedral particles

Fulei Chen, Huaqing Ma, Zihan Liu, Lianyong Zhou, Yongzhi Zhao

Summary: A particle breakage model based on the particle replacement scheme, using the polyhedral model to describe particles, is proposed in this work to accurately describe the breakage of a large number of particles. Additionally, a fast-cutting algorithm is proposed to reproduce the size distribution of progeny particles determined by the breakage model. The validation and simulation results show satisfactory accuracy, efficiency, and stability of the algorithm.

POWDER TECHNOLOGY (2024)

Review Engineering, Chemical

Non-invasive and non-intrusive diagnostic techniques for gas-solid fluidized beds - A review

Matteo Errigo, Christopher Windows-Yule, Massimiliano Materazzi, Dominik Werner, Paola Lettieri

Summary: Gas-solid fluidized-bed systems have advantages in terms of chemical reaction efficiency and temperature control, making them widely used in industrial applications. However, the design, scale-up, and optimization of these complex units are limited by the lack of deep physical understanding. Non-invasive and non-intrusive diagnostic techniques provide a way for researchers to study these systems without affecting the flow field or directly contacting the medium under study.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Experimental investigation on the ferrofluid flow in a horizontal mini channel under the constant magnetic field using PIV

Saeed Fateh, Mohammad Behshad Shafii, Mohammad Najafi, Cyrus Aghanajafi

Summary: Applying a magnetic field to ferrofluids alters their flow characteristics and enhances heat transfer. Through visualization and quantitative investigation, it is found that the magnetic field influences the flow patterns and velocity profiles, improving fluid mixing and vorticity magnitude.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Influence of microscopic parameters on the macroscopic mechanical response of sand

Lei Gao, Bingbing Wei, Xiaochuan Hu, Zaifeng Yao, Yiwen Fang, Xuejian Gao

Summary: In this study, a numerical model of sand triaxial test was established using discrete element software PFC3D, and an indoor triaxial test was conducted to calibrate the numerical model. The influence of microscopic parameters on the macroscopic mechanical response of sand was analyzed. The results showed that the friction coefficient had the greatest impact on the peak strength and residual strength of the sand's stress-strain curve, and it was positively correlated. The normal tangential stiffness ratio was negatively correlated, while the porosity and boundary flexibility stiffness had minimal influence on it.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Fabrication and evaluation of novel amphiphilic star block copolymers for increasing free water content in lignite to make coal water slurries

Xuan Liu, Jie Gong, Kai Jiang, Xiaojuan Lai, Yu Tian, Kang Zhang

Summary: This study aimed to improve the performance of lignite coal water slurries (CWSs) by synthesizing a series of three-arm amphiphilic block copolymers. By controlling the relative molecular weight, hydrophilic/hydrophobic ratio, and ionic group content, the apparent viscosity of CWSs was significantly reduced and the static stability was improved. Thermogravimetric testing and XPS analysis were conducted to reveal the mechanism behind the improved performance.

POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

Bubbles and bed expansion in low pressure fluidization

Lanka Dinushke Weerasiri, Daniel Fabijanic, Subrat Das

Summary: Fluidization at low pressure offers significant benefits for the fine chemical industry. This study investigates the behavior of bubbles and bed expansion under low pressure conditions. It is found that lower pressure leads to larger bubbles, increased bubble quantity, and higher aspect ratio. The predictability is affected by the inhomogeneous fluidization, but low pressure fluidization can generate similar bubble sizes with lower fluidizing mass compared to atmospheric pressure.

POWDER TECHNOLOGY (2024)