4.7 Article

Rational design of a biomimetic glue with tunable strength and ductility

Journal

POLYMER CHEMISTRY
Volume 8, Issue 10, Pages 1654-1663

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6py02232d

Keywords

-

Funding

  1. Council for Science, Technology, and Innovation
  2. JST
  3. MEXT KAKENHI [15616104]
  4. Grants-in-Aid for Scientific Research [15K13792] Funding Source: KAKEN

Ask authors/readers for more resources

The development of high-strength bonding materials requires a precise balance between key molecular components to allow for efficient adhesion at substrate interfaces and strong cohesive reinforcement in bulk medium. Furthermore, the cooperative tuning of both strength and adhesive ductility is desirable for achieving multiple benefits, including preventing a mismatch between adhesives and a wide-range of substrate moduli (ranging from stiff to flexible), as well as the ability to withstand mechanical load variations that may be sudden or occurring at regular intervals. This work presents a biomimetic design used to access variable strength and ductility in a next-generation adhesive. A host of random linear copolymers comprised of mussel-mimetic anchoring molecular units, and readily available alkyl methacrylates, were thoroughly investigated in order to determine the role of aliphatic interactions in macroscopic bonding. Systematic manipulations of several parameters, including alkyl chain length/structural isomers, composition ratios, and formulation conditions, were carried out to identify the optimal conditions for the best performance. Furthermore, the efficient bonding ability of these adhesives for a wide-range of substrates (e.g. metals, glass, and plastics) in both similar and dissimilar attachments, serves to demonstrate the versatility and tunable functionalities of the present strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available