4.7 Article

Direct effects of soil organic matter on productivity mirror those observed with organic amendments

Journal

PLANT AND SOIL
Volume 423, Issue 1-2, Pages 363-373

Publisher

SPRINGER
DOI: 10.1007/s11104-017-3513-5

Keywords

Crop productivity; Crop yield; Soil health; Soil organic carbon; Soil organic matter; Soil quality; Sustainable agriculture

Funding

  1. Yale Institute for Biospheric Studies

Ask authors/readers for more resources

Organic amendments to arable soil build soil organic matter (SOM), which can increase crop yields. However, organic amendments can influence crop yields independently of SOM by providing nutrients directly to plants. The relative importance of native organic matter versus organic amendments is not well quantified. We experimentally manipulated both organic amendments and native SOM concentrations to quantify their relative importance to crop yields. We created OM concentration gradients by (1) diluting an organic-rich A-horizon with a mineral base and (2) amending compost to the same mineral base, generating OM concentrations for both treatments of approximately 2, 4 and 8%. We grew buckwheat and measured plant productivity and a range of soil fertility variables. Higher concentrations of OM, whether native or amended, were associated with higher soil water holding capacity and nutrients, and improved soil structure. Consequently, increases in both native and amended OM were associated with strong positive but saturating impacts on productivity, though amendment effects were greater. Our results suggest that native SOM can support productivity levels comparable to those observed with organic amendments. Although our quantitative findings will likely vary for different soils and amendments, our results lend support to the idea that SOM stocks directly increase productivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available