4.2 Article

Variation in growth and developmental responses to supraoptimal temperatures near latitudinal range limits of gypsy moth Lymantria dispar (L.), an expanding invasive species

Journal

PHYSIOLOGICAL ENTOMOLOGY
Volume 42, Issue 2, Pages 181-190

Publisher

WILEY
DOI: 10.1111/phen.12190

Keywords

Forest pest; heat tolerance; invasion front; latitudinal gradient; local adaptation; thermal performance; warming climate

Categories

Funding

  1. Biology Departments at Virginia Commonwealth University
  2. University of Richmond
  3. USDA National Institute of Food and Agriculture [2014-67012-23539]
  4. United States Forest Service [13-CA-11420004-231]
  5. Virginia Commonwealth University Presidential Research Quest Fund
  6. Gypsy Moth Slow-the-Spread Foundation, Inc. [A106307]
  7. HHMI undergraduate program [52007567]
  8. School of Arts and Sciences at the University of Richmond
  9. Division Of Environmental Biology
  10. Direct For Biological Sciences [1556767] Funding Source: National Science Foundation

Ask authors/readers for more resources

Variation in thermal performance within and between populations provides the potential for adaptive responses to increasing temperatures associated with climate change. Organisms experiencing temperatures above their optimum on a thermal performance curve exhibit rapid declines in function and these supraoptimal temperatures can be a critical physiological component of range limits. The gypsy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is one of the best-documented biological invasions and factors driving its spatial spread are of significant ecological and economic interest. The present study examines gypsy moth sourced from different latitudes across its North American range for sensitivity to high temperature in constant temperature growth chamber experiments. Supraoptimal temperatures result in higher mortality in northern populations compared with populations from the southern range extent (West Virginia and coastal plain of Virginia, U.S.A.). Sublethal effects of high temperature on traits associated with fitness, such as smaller pupal mass, are apparent in northern and West Virginia populations. Overall, the results indicate that populations near the southern limits of the range are less sensitive to high temperatures than northern populations from the established range. However, southern populations are lower performing overall, based on pupal mass and development time, relative to northern populations. This suggests that there may be a trade-off associated with decreased heat sensitivity in gypsy moth. Understanding how species adapt to thermal limits and possible fitness trade-offs of heat tolerance represents an important step toward predicting climatically driven changes in species ranges, which is a particularly critical consideration in conservation and invasion ecology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available