4.8 Article

Direct Observation of Percolation in the Yielding Transition of Colloidal Glasses

Journal

PHYSICAL REVIEW LETTERS
Volume 118, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.118.148001

Keywords

-

Funding

  1. Innovational Research Incentives Scheme from NWO (Netherlands Organization for Scientific Research)
  2. European Research Council (ERC) [291002 SIZEFFECTS]
  3. Academy of Finland FiDiPro program [13282993]

Ask authors/readers for more resources

When strained beyond the linear regime, soft colloidal glasses yield to steady-state plastic flow in a way that is similar to the deformation of conventional amorphous solids. Because of the much larger size of the colloidal particles with respect to the atoms comprising an amorphous solid, colloidal glasses allow us to obtain microscopic insight into the nature of the yielding transition, as we illustrate here combining experiments, atomistic simulations, and mesoscopic modeling. Our results unanimously show growing clusters of nonaffine deformation percolating at yielding. In agreement with percolation theory, the spanning cluster is fractal with a fractal dimension d(f) similar or equal to 2, and the correlation length diverges upon approaching the critical yield strain. These results indicate that percolation of highly nonaffine particles is the hallmark of the yielding transition in disordered glassy systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available