4.6 Article

Environment-assisted quantum transport through single-molecule junctions

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 19, Issue 43, Pages 29534-29539

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp06237k

Keywords

-

Funding

  1. Clarendon Fund
  2. EPSRC
  3. Royal Society of Edinburgh
  4. Scottish Government
  5. Royal Academy of Engineering
  6. EPSRC QuEEN Programme [EP/N017188/1]
  7. John Templeton Foundation
  8. Engineering and Physical Sciences Research Council [EP/N017188/1, EP/H001972/1, EP/J015067/1, 1655852] Funding Source: researchfish
  9. EPSRC [EP/J015067/1, EP/N017188/1, EP/H001972/1] Funding Source: UKRI

Ask authors/readers for more resources

Single-molecule electronics has been envisioned as the ultimate goal in the miniaturisation of electronic circuits. While the aim of incorporating single-molecule junctions into modern technology still proves elusive, recent developments in this field have begun to enable experimental investigation of fundamental concepts within the area of chemical physics. One such phenomenon is the concept of environment-assisted quantum transport which has emerged from the investigation of exciton transport in photosynthetic complexes. Here, we study charge transport through a two-site molecular junction coupled to a vibrational environment. We demonstrate that vibrational interactions can significantly enhance the current through specific molecular orbitals. Our study offers a clear pathway towards finding and identifying environment-assisted transport phenomena in charge transport settings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Implementation of Quantum Level Addressability and Geometric Phase Manipulation in Aligned Endohedral Fullerene Qudits

Shen Zhou, Jiayue Yuan, Zi-Yu Wang, Kun Ling, Peng-Xiang Fu, Yu-Hui Fang, Ye-Xin Wang, Zheng Liu, Kyriakos Porfyrakis, G. Andrew D. Briggs, Song Gao, Shang-Da Jiang

Summary: The addressability of individual electron spin levels in endohedral nitrogen fullerenes has been achieved using molecular engineering and liquid-crystal-assisted methods. This allows for the coherent manipulation of electron spin levels and the implementation of quantum geometric phase manipulation.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Multidisciplinary Sciences

Superabsorption in an organic microcavity: Toward a quantum battery

James Q. Quach, Kirsty E. McGhee, Lucia Ganzer, Dominic M. Rouse, Brendon W. Lovett, Erik M. Gauger, Jonathan Keeling, Giulio Cerullo, David G. Lidzey, Tersilla Virgili

Summary: The rate at which matter emits or absorbs light can be changed by the environment. This study focuses on the phenomenon of superabsorption, which is harder to demonstrate due to the challenges of probing ultrafast processes. A paradigmatic model of a quantum battery, made of a microcavity enclosing a molecular dye, is implemented to observe charging dynamics and demonstrate superextensive charging rates and storage capacity. Decoherence is found to play a crucial role in stabilizing energy storage.

SCIENCE ADVANCES (2022)

Article Optics

Quantum microscopy based on Hong-Ou-Mandel interference

Bienvenu Ndagano, Hugo Defienne, Dominic Branford, Yash D. Shah, Ashley Lyons, Niclas Westerberg, Erik M. Gauger, Daniele Faccio

Summary: In this study, a full-field, scan-free quantum imaging technique exploiting Hong-Ou-Mandel interference is developed to reconstruct the surface depth profile of transparent samples. The ability to retrieve images with micrometre-scale depth features is demonstrated even with a low photon flux.

NATURE PHOTONICS (2022)

Article Physics, Multidisciplinary

Charge-State Dependent Vibrational Relaxation in a Single-Molecule Junction

Xinya Bian, Zhixin Chen, Jakub K. Sowa, Charalambos Evangeli, Bart Limburg, Jacob L. Swett, Jonathan Baugh, G. Andrew D. Briggs, Harry L. Anderson, Jan A. Mol, James O. Thomas

Summary: The outcome of electron-transfer processes is determined by the quantum-mechanical interplay between electronic and vibrational degrees of freedom. This study investigates electron transport through a porphyrin dimer molecule weakly coupled to graphene electrodes, revealing sequential tunneling initiated by current-induced phonon absorption and proceeding through rapid sequential transport via a nonequilibrium vibrational distribution.

PHYSICAL REVIEW LETTERS (2022)

Review Physics, Applied

Learning quantum systems

Valentin Gebhart, Raffaele Santagati, Antonio Andrea Gentile, Erik M. Gauger, David Craig, Natalia Ares, Leonardo Banchi, Florian Marquardt, Luca Pezze, Cristian Bonato

Summary: Although the complexity of quantum systems increases exponentially with their size, classical algorithms and optimization strategies still play a crucial role in characterizing and detecting quantum states and dynamics. The future of quantum technologies relies on developing complex quantum systems for computation, simulation, and sensing, which poses challenges in control, calibration, and validation. This review explores classical post-processing techniques and adaptive optimization approaches to learn about quantum systems, their correlations, dynamics, and interaction with the environment, using various qubit architectures such as spin qubits, trapped ions, photonic and atomic systems, and superconducting circuits. It also highlights the importance of Bayesian formalism and neural networks.

NATURE REVIEWS PHYSICS (2023)

Article Chemistry, Multidisciplinary

Phase-Coherent Charge Transport through a Porphyrin Nanoribbon

Zhixin Chen, Jie-Ren Deng, Songjun Hou, Xinya Bian, Jacob L. Swett, Qingqing Wu, Jonathan Baugh, Lapo Bogani, G. Andrew D. Briggs, Jan A. Mol, Colin J. Lambert, Harry L. Anderson, James O. Thomas

Summary: Since the early days of quantum mechanics, it has been known that electrons have wave-particle duality. In this study, we demonstrate that electron transmission remains phase-coherent in molecular porphyrin nanoribbons connected to graphene electrodes. This opens up new avenues for studying quantum coherence in molecular electronic and spintronic devices.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Physics, Multidisciplinary

Phonon coupling versus pure dephasing in the photon statistics of cooperative emitters

J. Wiercinski, E. M. Gauger, M. Cygorek

Summary: In this paper, the existence of weak dephasing mechanisms is confirmed by performing two-photon coincidence measurements on cooperatively emitting quantum dots. The impact of different decoherence mechanisms on the two-photon coincidence signals is investigated, and it is found that the strongly coupled phonon environment has a weak effect on coherence. This study provides a practical means of investigating decoherence processes in solid-state emitters.

PHYSICAL REVIEW RESEARCH (2023)

Article Chemistry, Physical

From Goldilocks to twin peaks: multiple optimal regimes for quantum transport in disordered networks

Alexandre R. Coates, Brendon W. Lovett, Erik M. Gauger

Summary: Understanding energy transport is important for light-harvesting and quantum technologies. Open quantum systems theory predicts environmental noise-assisted quantum transport (ENAQT) in biological and artificial systems. Previous studies focused on canonical structures like chains, rings, and light-harvesting complexes, leading to assumptions about ENAQT. This paper shows that physically modeled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2023)

Article Optics

Signatures of cooperative emission in photon coincidence: Superradiance versus measurement-induced cooperativity

Moritz Cygorek, Eleanor D. Scerri, Ted S. Santana, Zhe X. Koong, Brian D. Gerardot, Erik M. Gauger

Summary: Indistinguishable quantum emitters exhibit superradiance when confined to length scales smaller than the wavelength of the light. Recent experiments show that similar effects can also occur between emitters that are too far apart to be superradiant, if correlations are induced by measurement-induced cooperativity. This study compares the effects of superradiance and measurement-induced cooperativity on time-dependent optical signals, finding that a dip in photon coincidences at zero time delay is a signature of interemitter correlations but does not unambiguously prove the presence of superradiance.

PHYSICAL REVIEW A (2023)

Article Physics, Multidisciplinary

Ultrastrong coupling between electron tunneling and mechanical motion

Florian Vigneau, Juliette Monsel, Jorge Tabanera, Kushagra Aggarwal, Lea Bresque, Federico Fedele, Federico Cerisola, G. A. D. Briggs, Janet Anders, Juan M. R. Parrondo, Alexia Auffeves, Natalia Ares

Summary: The ultrastrong coupling between single-electron tunneling and nanomechanical motion provides exciting opportunities for exploring fundamental questions and developing new platforms for quantum technologies. We have measured and modeled this electromechanical coupling in a fully suspended carbon nanotube device and found a ratio of gm/omega m = 2.72 +/- 0.14, which is the highest among all other electromechanical platforms and well within the ultrastrong coupling regime.

PHYSICAL REVIEW RESEARCH (2022)

Article Multidisciplinary Sciences

Large-scale FRET simulations reveal the control parameters of phycobilisome light-harvesting complexes

Emma Joy Dodson, Nicholas Werren, Yossi Paltiel, Erik M. M. Gauger, Nir Keren

Summary: In this study, energy transfer through subsets of PBS structures was modeled using a comprehensive dynamic Hamiltonian model. The simulations suggest that the PBS chromophore network enhances energy distribution over the entire PBS structure and that energy transfer is relatively immune to the effects of distances or rotations. Therefore, PBS provides unique advantages and flexibility to aquatic photosynthesis.

JOURNAL OF THE ROYAL SOCIETY INTERFACE (2022)

Article Multidisciplinary Sciences

Statistical signature of electrobreakdown in graphene nanojunctions

Charalambos Evangeli, Sumit Tewari, Jonathan Marcell Kruip, Xinya Bian, Jacob L. Swett, John Cully, James Thomas, G. Andrew D. Briggs, Jan A. Mol

Summary: Controlled electrobreakdown of graphene is important for various applications, and statistical analysis of the process provides insights into its behavior and characteristics under different conditions.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2022)

Article Quantum Science & Technology

Eliminating Radiative Losses in Long-Range Exciton Transport

Scott Davidson, Felix A. Pollock, Erik Gauger

Summary: This study demonstrates the efficient elimination of radiative losses in systems with an intrinsic energy gradient. By adjusting the intra-unit-cell coupling, the system's eigenstates are partitioned into bright and dark subspaces, enabling efficient long-range transport through a dark chain of eigenstates. Additionally, appropriately aligned dipole moments provide additional protection against nonradiative loss processes.

PRX QUANTUM (2022)

Article Quantum Science & Technology

Exact Dynamics of Nonadditive Environments in Non-Markovian Open Quantum Systems

Dominic Gribben, Dominic M. Rouse, Jake Iles-Smith, Aidan Strathearn, Henry Maguire, Peter Kirton, Ahsan Nazir, Erik M. Gauger, Brendon W. Lovett

Summary: In this study, a numerically exact and efficient technique called time-evolving matrix product operator (TEMPO) representation is proposed for dealing with quantum systems strongly coupled to multiple baths. The method is tested on a model system and demonstrates its capability of capturing nonadditive behavior.

PRX QUANTUM (2022)

Article Materials Science, Multidisciplinary

Analytic expression for the optical exciton transition rates in the polaron frame

Dominic M. Rouse, Erik M. Gauger, Brendon W. Lovett

Summary: In this paper, an intuitive analytic expression for the optical transition rates in the polaron frame is derived using a finite-mode truncation of the vibrational bath. The technique shows convergence of transition rates for only a few modes in the truncated spectral density and captures nonadditive effects.

PHYSICAL REVIEW B (2022)

Article Chemistry, Physical

Effect of a single methyl substituent on the electronic structure of cobaltocene studied by computationally assisted MATI spectroscopy

Sergey Yu. Ketkov, Sheng-Yuan Tzeng, Elena A. Rychagova, Anton N. Lukoyanov, Wen-Bih Tzeng

Summary: Metallocenes, including methylcobaltocene, play important roles in various fields of chemistry. The ionization energy and vibrational structure of (Cp ')(Cp)Co can be influenced by introducing methyl substituents. The mass-analyzed threshold ionization spectrum and DFT calculations provide accurate information about the properties and transformations of (Cp ')(Cp)Co.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Review Chemistry, Physical

Polymer mechanochemistry: from single molecule to bulk material

Qifeng Mu, Jian Hu

Summary: Polymer mechanochemistry has experienced a renaissance due to the rapid development of mechanophores and principles governing mechanochemical transduction or material strengthening. It has not only provided fundamental guidelines for converting mechanical energy into chemical output, but also found applications in engineering and smart devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Complex oiling-out behavior of procaine with stable and metastable liquid phases

Da Hye Yang, Francesco Ricci, Fredrik L. Nordstrom, Na Li

Summary: Through systematic evaluation of the oiling-out behavior of procaine, we identified both stable and metastable liquid-liquid phase separation, and established phase diagrams to assist in rational selection of crystallization strategies.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Breaking the size constraint for nano cages using annular patchy particles

Vikki Anand Varma, Simmie Jaglan, Mohd Yasir Khan, Sujin B. Babu

Summary: Designing engineering structures like nanocages, shells, and containers through self-assembly of colloids is a challenging problem. This work proposes a simple model for the subunit, which leads to the formation of monodispersed spherical cages or containers. The model with only one control parameter can be used to design cages with the desired radius.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of the charge rate on the mechanical response of composite graphite electrodes: in situ experiment and mathematical analysis

Hainan Jiang, Yaolong He, Xiaolin Li, Zhiyao Jin, Huijie Yu, Dawei Li

Summary: The cycling lifespan and coulombic efficiency of lithium-ion batteries are crucial for high C-rate applications. The Li-ion concentration plays a crucial role in determining the mechanical integrity and structural stability of electrodes. This study focuses on graphite as the working electrode and establishes an experimental system to investigate the mechanical properties of composite graphite electrode at different C-rates. Considering the effect of Li-ion concentration in stress analysis is found to be significant.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of weak π-π interactions on single-molecule electron transport properties of the tetraphenylethene molecule and its derivatives: a first-principles study

Zhiye Wang, Yunchuan Li, Mingjun Sun

Summary: This study investigates the influence of intramolecular pi-pi interactions on the electronic transport capabilities of molecules. By designing and analyzing three pi-conjugated molecules, the researchers observe that different pi-conjugated structures have varying effects on electron transport. The findings provide a theoretical foundation for designing single-molecule electronic devices with multiple electron channels based on intramolecular pi-pi interactions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Designed fabrication of MoS2 hollow structures with different geometries and the comparative investigation toward capacitive properties

Yuandong Xu, Haoyang Feng, Chaoyang Dong, Yuqing Yang, Meng Zhou, Yajun Wei, Hui Guo, Yaqing Wei, Jishan Su, Yingying Ben, Xia Zhang

Summary: Hollow MoS2 cubes and spheres were successfully synthesized using a one-step hydrothermal method with the hard template method. The hollow MoS2 cubes exhibited higher specific capacitance and energy density compared to the hollow MoS2 spheres. The symmetrical supercapacitors assembled with these hollow structures showed good performance and high capacity retention after multiple cycles. These findings suggest that controlling the pore structure and surface characteristics of MoS2 is crucial for enhancing its electrochemical properties.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer

Ainhoa Oliden-Sanchez, Rebeca Sola-Llano, Joaquin Perez-Pariente, Luis Gomez-Hortiguela, Virginia Martinez-Martinez

Summary: The combination of photoactive molecules and inorganic structures is important for the development of advanced materials in optics. In this study, bulky dyes were successfully encapsulated in a zeolitic framework, resulting in emission throughout the visible spectrum.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Insights into the multi-functional lithium difluoro(oxalate)borate additive in boosting the Li-ion reaction kinetics for Li3VO4 anodes

Miaomiao Zhang, Cunyuan Pei, Qiqi Xiang, Lintao Liu, Zhongxu Dai, Huijuan Ma, Shibing Ni

Summary: The design of a solid electrolyte interphase (SEI) plays a crucial role in improving the electrochemical performance of anode materials. In this study, lithium difluoro(oxalate)borate (LiDFOB) is used as an electrolyte additive to form a protective SEI film on Li3VO4 (LVO) anodes. The addition of LiDFOB results in a dense, uniform, stable, and LiF-richer SEI, which enhances the Li-ion storage kinetics. The generated SEI also prevents further decomposition of the electrolyte and maintains the morphology of LVO anodes during charge/discharge processes. This work demonstrates the effectiveness of LiDFOB as a multi-functional additive for LiPF6 electrolytes and provides insights into SEI construction for high-performance LVO anodes.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

New insights into the structure of the Ag(111)-p(4 x 4)-O phase: high-resolution STM and DFT study

B. V. Andryushechkin, T. V. Pavlova, V. M. Shevlyuga

Summary: The atomic structure of the Ag(111)-p(4 x 4)-O phase was reexamined and two phases with the same periodicity were discovered. It was demonstrated that the accepted Ag6 model is incompatible with high-resolution oxygen-sensitive STM images.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

ClO-driven degradation of graphene oxide: new insights from DFT calculations

S. L. Romo-Avila, D. Marquez-Ruiz, R. A. Guirado-Lopez

Summary: In this study, we used density functional theory (DFT) calculations to investigate the interaction between model graphene oxide (GO) nanostructures and chlorine monoxide ClO. We aimed to understand the role of this highly oxidizing species in breaking C-C bonds and forming significant holes on GO sheets. Our results showed that C-C bonds in a single graphene oxide sheet can be broken through a simple mechanism involving the dissociation of two chemically attached ClO molecules. The formation of carbonyl groups and holes on the GO surface was also observed. This study provides important insights into the degradation of carbon nanotubes and the stability of GO during the myeloperoxidase (MPO) catalytic cycle.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Composition dependence of X-ray stability and degradation mechanisms at lead halide perovskite single crystal surfaces

Alberto Garcia-Fernandez, Birgit Kammlander, Stefania Riva, Hakan Rensmo, Ute B. Cappel

Summary: In this study, the X-ray stability of five different lead halide perovskite compositions (MAPbI3, MAPbCl3, MAPbBr3, FAPbBr3, CsPbBr3) was investigated using photoelectron spectroscopy. Different degradation mechanisms and resistance to X-ray were observed depending on the crystal composition. Overall, perovskite compositions based on the MA+ cation were found to be less stable than those based on FA+ or Cs+. Metallic lead formation was most easily observed in the chloride perovskite, followed by bromide, and very little in MAPbI3. Multiple degradation processes were identified for the bromide compositions, including ion migration, formation of volatile and solid products, as well as metallic lead. CsBr was formed as a solid degradation product on the surface of CsPbBr3.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Effect of porosity on rapid dynamic compaction of nickel nanopowder

Timofei Rostilov, Vadim Ziborov, Alexander Dolgoborodov, Mikhail Kuskov

Summary: The shock-loading behavior of nanomaterials is investigated in this study. It is found that shock compaction waves exhibit a distinct two-step structure, with the formation of faster precursor waves that travel ahead of the main compaction waves. The complexity of the shock Hugoniot curve of the tested nanomaterial is described, and the effect of initial porosity on the compressed states is demonstrated.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

The effect of temperature and oxygen partial pressure on the concentration of iron and manganese ions in La1/3Sr2/3Fe1-xMnxO3-δ

Sergey S. Nikitin, Alexander D. Koryakov, Elizaveta A. Antipinskaya, Alexey A. Markov, Mikhail V. Patrakeev

Summary: The stability of La1/3Sr2/3Fe1-xMnxO3-delta, a perovskite-type oxide, under reducing conditions is dependent on the manganese content. Increasing the manganese content leads to a decrease in stability. The behavior of iron and manganese in the oxide shows distinct differences, which can be attributed to the difference in the enthalpy of oxidation reactions. Additionally, the change in the La/Sr ratio affects the concentration of iron and manganese ions.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)

Article Chemistry, Physical

Perovskenes: two-dimensional perovskite-type monolayer materials predicted by first-principles calculations

Mosayeb Naseri, Shirin Amirian, Mehrdad Faraji, Mohammad Abdur Rashid, Maicon Pierre Lourenco, Venkataraman Thangadurai, D. R. Salahub

Summary: Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3, this study assessed the structural stability and investigated the electronic, optical, and thermoelectric properties of a group of two-dimensional perovskite-type materials called perovskenes. The findings revealed that these materials are wide bandgap semiconductors with potential application in UV shielding. Moreover, they exhibit better electrical and thermal conductivity at high temperatures, enabling efficient power generation in thermoelectric devices.

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2024)