4.7 Article

Numerical simulation of the dual effect of green roof thermal performance

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 106, Issue -, Pages 1418-1425

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2015.10.020

Keywords

Energy conservation; Green roof; Thermal comfort; UHI effect; Photosynthesis

Ask authors/readers for more resources

Green roof is one of technologies applied in reducing energy consumption when cooling of a building is of concern. The heat and mass transfer in green roof is expressed by the complex system of coupled nonlinear differential equations which should be solved with respect to the four elements of air, plants, soil and structure, simultaneously. Numerical solution is applied through finite difference method. Over 40 models among 100 are adopted for the evaluation of thermal, physical and biological parameters in order to achieve best accuracy. Modeling of photosynthesis and plants response to environmental change is simulated for the first time in green roof modeling history. Grid independency has been checked for two most challenging regions; plants and soil. The average difference between numerical results and experimental measurements is below 8%, indicating a good agreement. The shading effect of plants and drought of soil layers due to solar radiation are shown. The results, obtained through comparison of green and concrete roofs indicate that the green roof represents 77% reduction in heat flux transmission and 13 K reduction in air temperature at one meter above the roof compared to conventional roof, revealing a significant effect in reducing the energy consumption required for cooling the buildings and urban heat island effect simultaneously. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available