4.7 Article Proceedings Paper

Target-site mutations conferring resistance to glyphosate in feathertop Rhodes grass (Chloris virgata) populations in Australia

Journal

PEST MANAGEMENT SCIENCE
Volume 74, Issue 5, Pages 1094-1100

Publisher

WILEY
DOI: 10.1002/ps.4512

Keywords

Chloris virgata; glyphosate resistance; EPSPS; target-site mutation

Funding

  1. Grains Research and Development Corporation [UA00158]
  2. Vietnam Government
  3. University of Adelaide

Ask authors/readers for more resources

BACKGROUNDChloris virgata is a warm-season, C-4, annual grass weed affecting field crops in northern Australia that has become an emerging weed in southern Australia. Four populations with suspected resistance to glyphosate were collected in South Australia, Queensland and New South Wales, Australia, and compared with one susceptible (S) population to confirm glyphosate resistance and elucidate possible mechanisms of resistance. RESULTSBased on the rate of glyphosate required to kill 50% of treated plants (LD50), glyphosate resistance (GR) was confirmed in four populations of C. virgata (V12, V14.2, V14.16 and V15). GR plants were 2-9.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. GR and S plants did not differ in glyphosate absorption and translocation. Target-site EPSPS mutations corresponding to Pro-106-Leu (V14.2) and Pro-106-Ser (V15, V14.16 and V12) substitutions were found in GR populations. The population with Pro-106-Leu substitution was 2.9-4.9-fold more resistant than the three other populations with Pro-106-Ser substitution. CONCLUSIONThis report confirms glyphosate resistance in C. virgata and shows that target-site EPSPS mutations confer resistance to glyphosate in this species. The evolution of glyphosate resistance in C. virgata highlights the need to identify alternative control tactics. (c) 2016 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available