4.4 Review

DOES FUEL TYPE INFLUENCE THE AMOUNT OF CHARCOAL PRODUCED IN WILDFIRES? IMPLICATIONS FOR THE FOSSIL RECORD

Journal

PALAEONTOLOGY
Volume 61, Issue 2, Pages 159-171

Publisher

WILEY
DOI: 10.1111/pala.12341

Keywords

fuel type; wildfires; experimental; charcoal; fossil charcoal

Categories

Funding

  1. European Research Council Starter Grant [ERC-20130StG-335891-ECO-FLAM]
  2. Arup/EPSRC Industrial CASE Studentship [14220013]
  3. Engineering and Physical Sciences Research Council [1648722] Funding Source: researchfish

Ask authors/readers for more resources

Charcoal occurrence is extensively used as a tool for understanding wildfires over geological timescales. Yet, the fossil charcoal literature to date rarely considers that fire alone is capable of creating a bias in the abundance and nature of charcoal it creates, before it even becomes incorporated into the fossil record. In this study we have used state-of-the-art calorimetry to experimentally produce charcoal from 20 species that represent a range of surface fuels and growth habits, as a preliminary step towards assessing whether different fuel types (and plant organs) are equally likely to remain as charcoal post-fire. We observe that charcoal production appears to be species specific, and is related to the intrinsic physical and chemical properties of a given fuel. Our observations therefore suggest that some taxa are likely to be overrepresented in fossil charcoal assemblages (i.e. needle-shed conifers, tree ferns) and others poorly represented, or not preserved at all (i.e. broad shoot-shed conifers, weedy angiosperms, shrub angiosperms, some ferns). Our study highlights the complexity of charcoal production in modern fuels and we consider what a bias in charcoal production may mean for our understanding of palaeowildfires.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available