4.7 Article

Power generation in fed-batch and continuous up-flow microbial fuel cell from synthetic wastewater

Journal

ENERGY
Volume 91, Issue -, Pages 235-241

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2015.08.029

Keywords

Microbial fuel cell; Two chamber; Up-flow; Recirculation rate; Continuous mode; Xylose

Funding

  1. Tampere University of Technology Graduate School (M.E.N)

Ask authors/readers for more resources

Up-flow bioreactors have the advantages of retaining very high cell density and having high mass transfer efficiency. The recirculation rate could improve the up-flow rate in up-flow bioreactor. A two-chamber UFMFC (up-flow microbial fuel cell) is constructed with flat graphite electrodes and anion exchange membrane for electricity generation. The anode chamber is seeded with compost culture enriched on xylose and operated on synthetic wastewater with 0.5 g/L xylose, external resistance of 100 I), at pH 7.0 and 37 degrees C in fed-batch mode. The cathode chamber in the top of the UFMFC is filled with potassium ferricyanide (pH 7.0) as the electron acceptor. The effects of different recirculation rates of 1.2, 2.4, 4.8 and 7.2 RV (reactor-volumes)/h to increase the mass transfer and electricity production are determined in fed-batch mode. At a recirculation rate of 4.8 RV/h, a power density of 356 +/- 24 mW/m(2) with CE (coulombic efficiency) of 213 +/- 1.0% is obtained. Decreasing HRT (hydraulic retention time) could improve the electricity production performance of UFMFC in continuous mode. The power generation is increased to 372 +/- 20 mW/m(2), while CE remains at 13.4 +/- 0.5% with HRT of 1.7 d and optimum recirculation rate of 4.8 RV/h on continuous mode. Microbial communities were characterized with PCR (polymerase chain reaction) - DGGE (denaturing gradient gel electrophoresis). In the end of the experiment, the biofilm contained both fermenting and exoelectrogenic bacteria, while fermenting and nitrate-reducing bacteria were mainly present in the anodic solutions. Moreover, some changes occurred in the microbial communities of the anodic solutions when the MFCs were switched from fed-batch to continuous mode, while the differences were minor between different recirculation rates in fed-batch mode. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available